FAMILIES OF ABELIAN VARIETIES AND LARGE GALOIS IMAGES

DAVID ZYWINA

ABSTRACT. Associated to an abelian variety A of dimension ¢ over a number field K is a Galois representation
pa: Gal(K/K) — Gng(Z). The representation p4 encodes the Galois action on the torsion points of A and its
image is an interesting invariant of A that contains a lot of arithmetic information. We consider abelian varieties
over K parametrized by the K-points of a nonempty open subvariety U C IP%. We show that away from a set of
density 0, the image of p4 will be very large; more precisely, it will have uniformly bounded index in a group
obtained from the family of abelian varieties. This generalizes earlier results which assumed that the family of
abelian varieties have “big monodromy”. We also give a version for a family of abelian varieties with a more
general base.

1. INTRODUCTION

Fix an abelian scheme 71: A — U of relative dimension ¢ > 1, where U is a non-empty open subvariety
of IP% with K a number field and n > 1. Choose an algebraic closure K of K and define the absolute Galois
group Galg := Gal(K/K).

Take any point u € U(K). The fiber of 7w over u is an abelian variety A, over K of dimension g. For each
positive integer m, let A, [m] be the m-torsion subgroup of A(K). The group A,[m] is a free Z/mZ-module
of rank m and has a natural Galg-action. This Galois action can expressed in terms of a representation

pA,m : Gall( — Autz/mz(A[m])
Taking the inverse limit over all m, ordered by divisibility, we obtain a single representation
pa,: Galg — Aut(lim Ay [m]) = Gng(Z)

that encodes the Galois action on the torsion of A,, where Z is the profinite completion of Z. We are inter-
ested in describing how large the image of p4, can be as we vary the point u € U(K).

We first observe that the abelian scheme A imposes a constraint on the image of p4,. Let 11 (U, 7) be
the étale fundamental group of U, where 7 is a fixed geometric generic point of U. For each positive
integer m, let A[m] be the m-torsion subscheme of A. The morphism A[m| — U can be viewed as locally
constant sheaf of Z/mZ-modules on U that is free of rank 2g; it thus corresponds to a representation
Pam: (U, 77) — Autz,,z(A[m];), where the group A[m]y is the fiber of A[m] above 7. Taking the inverse
limit over all m, ordered by divisibility, we obtain a single representation

pa: m(U,7) — Aut(l'&nA[m]ﬁ) = Gng(Z).
Specialization at a point u € U(K) induces a homomorphism u,: Galx — 71 (U, 77), uniquely defined up
to conjugacy. Composing u, with p4, we obtain a representation Galg — Gng(Z) that agrees with py4,
up to an inner automorphism of Gng(Z). So we may identity p4, with the specialization of p4 at u. In

particular, we can view p4, (Galk) as a subgroup of p 4 (711 (U, 77)) thatis uniquely defined up to conjugation.
Suppressing the base point, we have

pa,(Galk) € pa(m(U))
forallu € U(K). Our main result is that the index [p4 (711 (U) ) : pa, (Galk)] is finite and bounded as we vary
over “most” u € U(K). Our notion of “most” will be that of density. Let H be the absolute multiplicative
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height function on IP" (K). The density of a set B C IP"(K) is the value

lim [{u € B:H(u) <x}|
x=+oo [{u € P"(K) : H(u) < x}|

if the limit exists. For example, U(K) has density 1. Our main theorem is the following:

Theorem 1.1. Fix an abelian scheme rt: A — U of positive relative dimension, where U is non-empty open subva-
riety of Py for a number field K and n > 1. Then there is a constant C such that

[pa(m(U)) : pa, (Galg)] < C
holds for all u € U(K) in a set of density 1.

Theorem 1.1 shows that, up to bounded index, the image of the specializations are usually as large
as possible when the geometric constraints are taken into account. This can thus be viewed as a variant
of Hilbert’s irreducibility theorem (and effective versions of Hilbert’s irreducibility theorem will be a key
component of our proof). This is useful since in practice, p4(7r1(U)) is easier to compute that the images
of the representations p4, (one reason is that there are geometric and topological approaches to computing
the normal subgroup p (71 (Ug)))-

However, note that our theorem is not a formal consequence of Hilbert’s irreducibility theorem since
pa(m(U)) is not finitely generated when viewed as a topological group with the profinite topology. More-
over, the constant C cannot alway be taken to be 1. As an example, take K = Q and consider any abelian
scheme A — U := A}Q —{0,1728} of relative dimension 1 such that each fiber A, is an elliptic curve with

j-invariant . In this case, we have p 4 (71 (U)) = GLy(Z). The theorem cannot hold with C = 1 since from
Serre we know that pg(Galg) # GLZ(Z) for all elliptic curves E over Q, cf. Proposition 22 of [Ser72]. For
this example, the theorem will hold with C = 2.

There are several special cases of Theorem 1.1 occurring in the literature and we will recall some in
§1.3. These earlier results have a strong constraint on the image of p4; more precisely, they assume that
pa(m (U)) is an open subgroup of Gszg(Z). The main novelty of Theorem 1.1 is the lack of restrictions
on our abelian scheme A — U. Since we have less control on the image of p 4, the group theory involved
is much more complicated; for example, the ¢-adic monodromy groups need not be connected and their
derived subgroups need not be simply connected.

The constant C in Theorem 1.1 that occurs in our proof will be given in §1.2. We have not tried to
determine the optimal C.

1.1. General base. Fix a number field K. Let 7: A — X be an abelian scheme of relative dimension g > 1,
where X is a smooth and geometrically integral variety defined over K of dimension n > 1. As before, we
can define a representation

PA: T (X) — Gng(Z)

Take any closed point x of X. The residue field k(x) of x is a finite extension of K. The fiber of A over
x is an abelian variety Ay over k(x). Associated to Ay, we have a representation pa,: Galy(,) — GLag(Z)

whose image we may again view as a subgroup of p4(7r1(X)). The following theorem says that there are
infinitely many closed points x of X of bounded degree such that p 4, (Galyy)) is large.

Theorem 1.2. There are constants d and C such that there are infinitely many closed points x of X satisfying
[k(x) : K] < dand [o4(m1(X)) : o4, (Gal(x))] < C.

The theorem can fail if we insist that d = 1; for example, consider the case where X is a curve of genus at
least 2 and hence X(K) is finite.

We will deduce Theorem 1.2 from Theorem 1.1. The idea is to find, after possibly shrinking X, an étale
map X — U, where U is open in IP}. We then apply Theorem 1.1 to the restriction of scalars of A from X to
u.
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1.2. The constant C. We now give a brief description of the constant C from Theorem 1.1 that occurs in
our proof, see Remark 5.10. In particular, observe that the constant C can be computed directly from H :=
pa(7r1(U)) and its normal subgroup Hg := pa (71 (Ug)).

Take any prime £ and let py: Gng(Z) — GLog(Z,) be the (-adic projection. Let G, be the Zariski closure
in GLyg @, of pe(pa(7r1(U))); it is an algebraic group over Q; whose neutral component we denote by G;.
Let M be the kernel of the homomorphism

H 5 Go(Q)) = Gi(Qy)/G3(Qy).

We will show later that M does not depend on the choice of £. The commutator subgroup M’ of M is normal
in H. We will see that the image of the quotient map

Hy — H/M'
is finite and its cardinality is our constant C.

Example 1.3. As a special case, consider when H = GSp,, (Z) and Hg = Spy, (Z); these are the largest that

both H and Hg could possibly be, up to conjugation in Gng(Z), when the abelian scheme A is principally
polarized. We have M = H since Gy = Gszngé is connected. Therefore, C is the cardinality of the group

szg(Z)/ Gszg(Z)’. One can show that C =1if g > 3and C =2if g =1or2.

1.3. Some earlier results. We now discuss special cases of Theorem 1.1 that have already been proved and
some related results. Note that some of the results use integral points instead of rational points. In the
results mentioned, the term most will refer to a suitable notion of density; the reader is encouraged to look
at the corresponding articles for the precise definitions.

We first discuss the fundamental case g = 1, i.e.,, A is an elliptic curve. For a non-CM elliptic curve

E/Q, Serre’s open image theorem says that pg(Galg) is an open subgroup of GL,(Z), cf. [Ser72]. In particular,
P ¢(Galk) = GLp(Z/{Z) for all primes £ > cg, where cg is a constant depending on E. As a consequence

of Serre’s theorem, if A is non-isotrivial then p 4 (771 (U)) is an open subgroup of GL,(Z).

The following are all with respect to the family A — U := SpecQ|a, b, (4a® + 27b%) "] of elliptic curves
given by the Weierstrass equation > = x% 4 ax + b. In this case, we have p4(7;(U)) = GLy(Z) and
pa(m(Ug)) = SLa(Z).

Duke [Duk97] proved that for “most” elliptic curves E/Q, we have py ,(Galk) = GL2(Z/¢Z) for all
primes. Building on this, Jones [Jon10] showed that for “most” elliptic curves E/Q, pg(Galg) is an index 2
subgroup of GL,(Z) (as already noted, pf is never surjective for an elliptic curve over Q). Similar results
for one-parameter families of elliptic curves over Q can be found in [CGJ11].

For a number field K # Q, Zywina showed that for “most” elliptic curves E/K, we have pg(Galg) =
{B € GLy(Z) : det(B) € Xeye(Galg)}, where xeye: Galg — Z* is the cyclotomic character. In partic-
ular, if K # Q contains no non-trivial abelian extension of Q, then there is an elliptic curve E/K with
pe(Galg) = GLy(Z). Greicius [Gre10] had previously constructed an explicit elliptic curve E over a num-
ber field with pg surjective.

We now consider ¢ > 2 and assume further that A is principally polarized. After possibly conjugating
P by an element in Gng(Z) we may assume that p 4 (711 (U)) is a subgroup of GSng(Z). Under the “big

A~

monodromy” assumption that p (71 (U)) is an open subgroup of GSp, (Z), Landesman, Swaminathan,
Tao and Xu proved Theorem 1.1 with an optimal C. Earlier, Wallace [Wal14] had proved a variant of this
with g = 2; also see Remark 1.3 in [LSTX19]. The case g = 1 had been proved in [Zyw10].

When K = Q, one can use the Kronecker—Weber theorem to show that p,4, (Galg) N Gszg(Z) agrees
with the commutator subgroup of p4, (Galg); this and the inclusion p4, (Galg) € pa(7r1(U)) are the only
constraints on the image of p4, for “most” u € U(K). In the general setting of Theorem 1.1, there may be
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additional constraints on the image of all the representations p4,,.

In the setting of Theorem 1.1, define the set
S :={u € U(K) : ps,(Galk) is not an open subgroup of p4 (71 (U))}.

An immediate consequence of Theorem 1.1 is that the set S density 0. Moreover, Cadoret proved that the
set S is thin in U(K), cf. Theorem 1.2 and §1.1 of [Cad15]. Recall that every thin subset of U(K) has density
0, cf. §13.1 of [Ser97].

1.4. Overview. We now give a brief overview of the proof of Theorem 1.1.

For a rational prime ¢, let p4 o: 1 (U) — GLyg (Zy) be the representation obtained by composing p4
with the natural projection Gng(Z) — Glag(Z;). We define G,  be the Z-group subscheme of GLyg 7,
obtained by taking the Zariski closure of p4 ¢(7r1(U)). These will agree with later definitions of p4 s and
G after choosing an appropriate Z-basis for the (-adic Tate module T;(A). The generic fiber G, ¢ of
G, is an algebraic group over Q, that we call the ¢-adic monodromy groups of A. In §2, we recall several
properties of G4 .

We have an easy inclusion p, ,(711(U)) € Ga(F;). Theorem 3.1, which is a generalization of Serre’s
open image theorem, implies that

[Gap(Fp) :pg(m(U))] <C
for a constant C that does not depend on /. There is a constant b4 such that the neutral component of the
algebraic group (G ¢)r, over [Fy is reductive for all £ > bu. For £ > by, let Hy is the derived subgroup
of the neutral component of the group (G4 ()g, and let Sy be the commutator subgroup of Hy(IF;) (in the
notation of §3, Sy = S4 ¢(IFy)’).

After possibly increasing b4, we will observe that

St C pae(m(U))

holds for all £ > by. In the special case of the examples in §1.3 where p (711 (U)) is an open subgroup of
Gszg(Z), we find that G4 ¢ = GSp,, 5, and 5 = szg(IFg) for all sufficiently large ¢.

Fix a prime ¢ > by and a point u € U(K), specialization gives an inclusion p, ,(Galk) C p4 ,(71(U))
uniquely determined up to conjugation. Since S; is a normal subgroup of G, ;(IF;), and hence also of
P 4,0(m1(U)), it makes sense to ask whether or not Sy is a subgroup of p, ,(Galk). Define the set

B:={u € U(K):p, ,(Galk) 2 S, for some prime { > ba}.

One of the main tasks of this paper is to show that B has density 0; equivalently, that for “most” u € U(K),
we have p 4 ,(Galg) 2 Sy forall £ > by. In §5, we prove that if the set B has density 0, then Theorem 1.1
will hold. This will require some information about the groups p4 (711 (Ug)) which we study in §4.

We will prove Theorem 1.1 in §9. Take any real number x > 2. Let B(x) be the set of u € B satisfying
H(u) < x. To prove that B has density 0, we need to show that |B(x)| = o(x[KQ("+1)) a5 x — co. For each
€ > by, let By(x) be the set of u € U(K) with H(u) < x satisfying p,4 ,(Galk) 2 S,. Using an effective open
image theorem for abelian varieties, we will show that

(1.1) B(x) C R(x) UT(x)U U By(x).
ba<t<c(logx)

for some constant ¢, where the sets R(x) and T(x) are defined at the beginning of §9. The important aspect
of the inclusion (1.1) is that the right hand side involves only a bounded number of primes ¢ while the
definition of B requires considering all primes £ > b4. In §9.2 and §9.3, we show that |R(x)| = o(x[KQ(n+1))
and |T(x)| = o(xKQ(+1)) S0 from (1.1), we have
(12) BOOI< Y, [Bu(x)] +o(xlm),

ba<t<c(logx)
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We thus need to find bounds for |By(x)|. The Hilbert Irreducibility Theorem (HIT) implies that |B;(x)| =
o(xlKQ(+1)) a5 x — co. However, to use (1.2) to find meaningful bounds for |B(x)|, we need to find better
bounds for |B,(x)| with an explicit dependency on /.

In §6, we prove an effective version of HIT using the large sieve. In §8.1, we use it to give a more
specialized version of HIT that is relevant to our application. To obtain the explicit bounds we require,
we will need some group theoretic input which is discussed in §7. For each prime ¢ > by and x > 2,
Theorem 8.1 says that

|By(x)] = o((g + 1)38(2g+1)/2 . K:Ql(n+1/2) logx + (£ + 1)(6n+15/2)g(2g+1))’

where the implicit constant depends only on A. Combining this with (1.2) gives |B(x)| = o(xKQ#+1)) and
hence B has density 0.
Finally in §10, we prove Theorem 1.2 by reducing to Theorem 1.1.

1.5. Notation. Consider a topological group G. The commutator subgroup of G is the closed subgroup G’
generated by the set of commutators of G. We say that G is perfect if G’ = G. Profinite groups, and in
particular finite groups, will always be considered with their profinite topology.

For a scheme X over a commutative ring R and a commutative R-algebra S, we denote by Xg the base
extension of X by SpecS. Let M be a free module of finite rank over a commutative ring R. Denote by
GL) the R-scheme such that GLy(S) = Autg(M ®g S) for any commutative R-algebra S with the obvious
functoriality.

For an algebraic group G over a field F, we denote by G° the neutral component of G, i.e., the connected
component of the identity of G. Note that G° is an algebraic subgroup of G.

For two real quantities f and g, the expression f <4, 1, ¢ Mmeans that the inequality |f| < C|g| holds
for some positive constant C depending only on ay,...,a,. In particular, f < ¢ means that the implicit
constant C is absolute. We denote by Oy, ..., (g) a quantity f satisfying f <4,,..a, §- For two real valued
functions f and g of a real variable x, with ¢(x) non-zero for all sufficiently large x, the expression f = 0(g)
means that f(x)/g(x) = 0as x — +oo.

For a number field K, we denote by Ok the ring of integers of K. For a non-zero prime ideal p of Ok,
we define its residue field IF, := Og/p. For a representation p: Galx — G unramified at a prime p, we
will view p(Froby) as either a conjugacy class of G or as an element of G that is uniquely defined up to
conjugacy. Throughout, ¢ will always denote a rational prime.

When talking about prime ideals of a number field K, density will always refer to natural density. From
context, there should be no confusion with the notion of density of subsets of P"(K).

1.6. Acknowledgements. Many thanks to David Zureick-Brown; this article was originally intended to be
part of a joint work with him. Many parts of the original project have been greatly expanded on by his REU
students in [LSTX19] and [LSTX17]. In particular, an examination of their papers will hopefully make up
for the lack of examples in this article.

2. /-ADIC MONODROMY GROUPS

Fix a number field K and an abelian scheme 77: A — U of relative dimension ¢ > 1, where U is a
non-empty open subvariety of IP¥ for some integer n > 0.

Note that by including the case n = 0, the following notation and definitions will also hold for an abelian
variety of dimension ¢ > 1 defined over the number field K (when n = 0, we have U = Py = SpecK and
we can identify 7r1 (U) with Galg).

We now extend our notation from the introduction. For an integer m > 2, let T;,(A) be the inverse
limit of the groups A[m‘]; over all e > 1, where the transition homomorphisms A[m®*1]; — A[m‘]; are
multiplication by m. The group Ty (A) is a free Z,,-module of rank 2g, where Z,, := lim Z /mtZ =
[1¢jm Z¢- The representations p 4 ,,. combine to give a continuous representation

PAm: 7'(1(1.1) — Auth(Tm(A)).
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Take any prime /. Define V;(A) := Ty(A) ®z, Qy; it is a Q/-vector space of dimension 2¢. With notation
as in §1.5, we have an algebraic group GLy,(4) defined over Q. We can view Autz, (T;(A)), and hence also

pae(mi(U)), as a subgroup of Autq, (V;(A)) = GLy,(4)(Q¢)-

2.1. {-adic monodromy groups. For a prime /, we have p4 ¢(71(U)) C GLy,(4)(Qy). To study the image
of p4 ¢, we will study a related algebraic group defined over Q.

Definition 2.1. The ¢-adic monodromy group of A, which we denote by G4, is the Zariski closure of
pa,e(m1(U)) in GLy,(4); it is an algebraic group defined over Q.

For any m > 2 and u € U(K), we can view p4, ,(Galk) as a closed subgroup of p4 ,,(711(U)) that is
uniquely determined up to conjugation. With m = /, we can thus identify G, , with a closed algebraic
subgroup of G4 ; uniquely defined up to conjugation by an element in G4 ;(Qy).

Lemma 2.2. Assume thatn > 1.

(i) For each integer m > 2, we have p 4, ,u(Galg) = pam(7r1(U)) for all u € U(K) away from a set of density
0.
(ii) For each prime ¢, we have G, 1 = G for all u € U(K) away from a set of density 0.

Proof. Part (ii) is an easy consequence of (i) with m = £.

We now prove (i). Define H := p4 ,, (711 (U)). Let ®(H) be the Frattini subgroup of H, i.e., the intersection
of the maximal closed and proper subgroups of H. The kernel of H — Auty,,z(Tu(A)/mTy,(A)) is an
open subgroup of H that is a product of finitely generated pro-¢ groups with ¢|m. From the proposition of
[Ser97, §10.5], we find that ®(H) is an open, and hence finite index, subgroup of H.

So there is an integer ¢ > 1 such that p4,,»(Galk) = H if and only if p 4 ,..(Galk) = py e (7r1(U)). The
lemma follows since Hilbert’s irreducibility theorem implies that p4 ,..(Galk) = p4 . (711(U)) holds for
all u € U(K) away from a set of density 0. O

Note that a priori the implicit set of density 0 in Lemma 2.2(ii) depends on £. The following proposition,
which we prove in §2.3, removes this dependence on /.

Proposition 2.3. Assume that n > 1. The set of u € U(K) for which G4, ¢ = G holds for all primes £ has
density 1.

2.2. Neutral component. Let G} , be the neutral component of G, 4, i.e., the connected component of G4 ¢
containing the identity. Note that G, , is an algebraic subgroup of G4 ;. Let

Yae: m(U) = Gae(Qr)/Gy (Qe)

be the surjective homomorphism obtained by composing p,4 , with the obvious quotient map. For any
u € U(K) satisfying G4, s = Ga ¢, the specialization of 7y 4 ¢ at u gives the homomorphism v, ,: Galx —
Ga,((Qe)/ Gy, (Qp).

Lemma 2.4.

(i) The kernel of 7y 4 ¢ is independent of L.
(ii) Suppose n > 1. Then there is a set S C U(K) with density 1 such that the specialization of 7y ¢ at u is
surjective for all £ and u € S.

Proof. If A is an abelian variety over K, then part (i) was proved by Serre [Ser00, 133]; see also [LP97]. We
may now assume thatn > 1.

Now suppose that there are primes ¢ and ¢’ such thatker 4 ; # kery4 ;. By Lemma 2.2(ii) and Hilbert’s
irreducibility theorem, there is a point u € U(K) such that G4, = Gay, G4, ¢ = Ga p, and such that the
kernel of the specializations of 4  and 4 ¢ at u give different subgroups of Galk. So ker -y, # kery, ¢
which contradicts the case of (i) we have already proved. Therefore, kery4 o = ker, » for any primes ¢
and /'

We now prove (ii). Let S be the set of u € U(k) for which the specialization of 7 4 ; at u is surjective. The
set S has density 1 by Hilbert’s irreducibility theorem. Take any point u € S. Since each -y 4 4 is surjective
and ker 1y 4 ¢ is independent of ¢, we find that the specialization of 4 , at u is surjective for one prime / if
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and only if it is surjective for all primes ¢. Therefore, the specialization of y 4 ¢ at u is surjective for all / by
our definition of S. O

For an abelian variety A defined over K, we denote by K™ the subfield of K fixed by the kernel of the
homomorphism

@.1) Yar: Galk 2% Gap(Qp) = Gar(Qr)/GS o (Q0).

Equivalently, K{™ is the smallest extension of K in K that satisfies p 4 ,(Gal K%onn) C G4 ,(Qy). By Lemma 2.4(i),
the number field K™ is independent of /.

Proposition 2.5.
(i) The group G , is reductive.
(ii) The rank of the reductive group G9 , is independent of (.
(ili) Let Ry be the commutant of G5 ,in Endq, (V¢(A)). The dimension of Ry as a Qg-vector space is independent
of £.
(iv) Suppose that n > 1. The set of u € U(K) for which G , = G , for all primes € has density 1.

Proof. We first consider the case where A is an abelian variety defined over a number field K. After replacing
A/K by its base extension to K™, we may assume without loss of generality that G4 ¢ is connected for all
£. From Faltings, cf. [Fal86], we know that:

(a) The Q[Galk]|-module V,(A) is semisimple.

(b) The natural map End(A) ®z Q; = Endg, (a1, (V¢(A)) is an isomorphism.

From (a), we deduce that G, ¢ is reductive. From (b), the commutant R; of G4, in Endg,(V,(A)) is iso-
morphic to End(A) ®z Q. In particular, the dimension of R, over Qy is independent of ¢ and the center
of Ry is semisimple for all sufficiently large ¢. Serre proved part (i) in [Ser00, 133]; this also follows from
Theorem 1.2 of [LP97] since the dimension of the groups H, , that occur there do not depend on /.

It remains to consider the case where n > 1. For a fixed ¢, Lemma 2.2(ii) implies that G4, , = G4 ¢ for
some u € U(K). In particular, G} , = G ;. The group G} , = G}, , is thus reductive from part (i) in the
case of an abelian variety defined over a number field. This proves (i).

Take any two distinct primes £ and ¢. By Lemma 2.2(ii), we have G4, = Ga ¢ and Gy, o = G4 p for
some u € U(K). In particular, G} , = G} ,and G} , = G ,. By part (ii) in the case of an abelian variety
defined over a number field, the ranks of G} , = Gj ,and G, , = Gy , are equal. Since £ and (" are
arbitrary primes, we deduce that the rank of G} , does not depend on £. This proves (ii).

Note that specialization gives an isomorphism V;(A,) = V;(A) for which the actions of the groups
Ga,¢ € Gay are compatible. Denote by R, the commutant of G}, , in Endg,(V¢(A)). For u € U(K), denote
by R,,¢ the commutant of G} , in Endq,(V¢(A)).

Take any two distinct primes ¢ and ¢'. As above, we have G0 = Gypand Gy , = G, for some
u € U(K). In particular, R, = Ry and R, y = Ry. By part (iii) in the case of an abelian variety defined
over a number field, we deduce that dimg, R is independent of £. This proves (iii).

It remains to prove that part (iv) holds; suppose n > 1. For each prime ¢, let S; be the set of u € U(K) for
which G , = G ,; it has density 1 by Lemma 2.2(ii).

Take any u € S and prime . We have an inclusion of groups G , € G , and they are reductive by
part (i). The inclusion implies that R,,;, C Ry. We have dimg, R, » = dimg, R since u € S, and hence
dimg, R, , = dimg, Ry by part (iii). Therefore, R, = R;. The groups Gy, and G , have the same rank
since u € 5y, and hence G ,and G} , have the same rank by part (ii).

As noted above, we have R, ; = End(A,) ®z Q and hence the Q-algebra R; = R, 4, and it center, are
semisimple for all ¢ greater than some constant b > 2.

Applying Lemma 2.6 below, we deduce that G , = G , for all primes £ > b. Therefore, G} , = Gj,
holds for all primes £ with u € S := (,<; S¢. The set S has density 1 since it is a finite intersection of density
1 sets by Lemma 2.2(ii). Part (iv) now follows. O
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Lemma 2.6. [Win02, Lemma 7] Let F be a perfect field whose characteristic is O or at least 5. Let G; C Gy be
reductive groups defined over F that have the same rank. Suppose we have a faithful linear representation Gy — GLy,
where V is a finite dimension F-vector space, such that the centers of the commutants of G and Gy in Endp(V) are
the same F-algebra R. Suppose further that the commutative F-algebra R is semisimple. Then G; = Gj. O

2.3. Proof of Proposition 2.3. Let S be the set of u € U(k) such that Gy, o = Gy, for all primes £ and such
that the specialization of vy, at u is surjective for all primes ¢. The set S has density 1 by Proposition 2.5(iv)
and Lemma 2.4(ii).

Now take any u € S and any prime /. Specialization gives an inclusion G4,, € G4, and we have
G5 = = Gj 4, Since u € S. The group Gy ¢(Qy) is Zariski dense in G4 ¢ since G4 ¢ is defined as the Zariski
closure of a subgroup of GLy,(4)(Qy). So to prove that G4, , = G4, it suffices to show that the natural
injective homomorphism ¢: GAM,K(QK) /G, 1(Qe) = Gau(Qr)/ G ,(Qy) is surjective. If ¢ was not surjec-
tive, then the specialization of 7, at u would not be surjective which is impossible since u € S. Therefore,
Ga, ¢ = Ga,. The proposition follows since S has density 1 and ¢ was arbitrary.

3. BIG ¢-ADIC IMAGES

Fix an abelian scheme 71: A — U of relative dimension ¢ > 1, where U is a non-empty open subvariety
of IP% with K a number field and n > 0. As noted in §2, this includes the case that A is an abelian variety
defined over K.

3.1. More /-adic monodromy groups. Similar to our definition of G4/, we now define an f-adic mon-
odromy that is a group scheme over Z,. With notation as in §1.5, we have an algebraic group scheme
GLr,(4) defined over Z,. Note that the generic fiber of GLr,(4) is GLy, ().

We define G 4 ¢ to be the Zariski closure of p4 ¢(711(U)) in GLr,(4); it is a group scheme defined over Z,.
The group schemes G4 ¢ and G 4 o determine each other. More precisely, G4 ¢ is the generic fiber of G4 , and
G, is the Zariski closure of G4 ¢ in GLr, (4).

Let G¢ As be the Z-group subscheme of G 4 ; that is the Zariski closure of G A0

Let S, ¢ be the Z,-group subscheme of G Y, that is the Zariski closure of the derived subgroup of G

3.2. An open image theorem. The following theorem says that the image of p4 ¢ is “large” for all suf-
ficiently large ¢. More precisely, p ¢(7r1(U)) contains Sy ¢(Zy)" and its index in G4 ¢(Zy) is uniformly
bounded for all sufficiently large /. The theorem also describes several important properties of the Z,-
group schemes G, , and Sy .

Theorem 3.1. There is a constant b 4, depending only on A, such that the following hold for all primes £ > b 4:

(i) The Z-group scheme G , is reductive and S 4 ¢ is semisimple.

(ii) We have p (1 (U)) 2 Sae(Zy) and py o(711(U)) 2 Sae(Fe)'.

(iii) We have [Ga(Zy) : pae(mi(U))] <a L

(iv) The groups Sy ¢(Zy) and Sy () are perfect and all of their finite simple quotients are of Lie type in
characteristic £. We have G5 ,(Z¢)' = Sp(Zy)'.

(v) The cardinality of Sa ¢(Zy)/Sa(Zy)" is finite and can be bounded in terms of g.

(vi) Suppose that H is a closed subgroup of Sy ¢(Z,), in the (-adic topology, whose image modulo ¢ contains
SA,£<]P€)/' Then H 2 SA,Z(ZZ)/'

We will prove Theorem 3.1 in §3.4 by using the following lemma to reduce to the case of an abelian
variety over a number field.

Lemma 3.2. If Theorem 3.1 holds for abelian varieties over any number field K, then it holds in general.

Proof. We can assume that n > 1. By Proposition 2.3, there is a u € U(K) such that G4,y = G, for all

. This implies that G4, , = Ga¢ and Sy, = Sa, hold for all /. Specialization by u gives inclusions

pa,0(Galk) € par(m(U)) € Gay(Zy). It is now clear that Theorem 3.1 for the abelian variety A, /K

implies that Theorem 3.1 holds for A with by :=bg4,. O
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3.3. An effective open image theorem. In this section, we assume that A is an abelian variety of dimension
g > 1 defined over a number field K. We will state a version of Theorem 3.1 due to the author that gives
avalue of b4 in terms of various invariants of A. Before stating the results, we need to recall some quantities.

The algebraic group Gj, , is reductive and its rank is independent of /, cf. Proposition 2.5(ii). Denote the
common rank of the groups G , by r.

Let p be any non-zero prime ideal of Ok for which A has good reduction. Denote by P4 ,,(x) the Frobenius
polynomial of A at p; it is a monic degree 2¢ polynomial with integer coefficients. For a prime ¢ satisfying
p 1 ¢, the representation p4 ¢ is unramified at p and we have

Pyp(x) = det(xI —pn ¢(Froby)).

Let @4 ,, be the subgroup of C* generated by the roots of P4 , (x).

We denote by /(A) the (logarithmic absolute) Faltings height of A obtained after base extending to any
finite extension of K over which A has semistable reduction, see §5 of [Cha86]. In particular, note that
h(Ar) = h(A) for any finite extension L/K.

Theorem 3.3. Let A be an abelian variety of dimension § > 1 defined over a number field K. Let q be a non-zero
prime ideal of Ok for which A has good reduction and @ 4 4 is a free abelian group of rank r. Then there are positive
constants c and vy, depending only on g, such that Theorem 3.1 holds with

ba = c- (max{[K : Q], h(A), N(q)})".

Proof. Take any prime ¢ > b4. Parts (i) and (iii) follow from parts (c) and (a), respectively, of Theorem 1.2
in [Zyw19]. Theorem 1.2(d) in [Zyw19] implies that p 4 ¢(Galg) 2 Sa /(Z;)’". Reducing modulo ¢ and using
that S4 ¢ is smooth, we find that p 4 ,(Galk) 2 Sa¢(IF)’; this proves (ii). Parts (iv) and (v) of Theorem 3.1
are shown to hold in the proof of Theorem 1.2 in [Zyw19], cf. Proposition 4.25 of [Zyw19]. Part (vi) of
Theorem 3.1 is also shown to hold in the proof of Theorem 1.2 in [Zyw19], cf. Lemmas 4.23 and 4.24 of
[Zyw19]. |

Remark 3.4. From Lemma 2.7 of [Zyw19], the set of non-zero prime ideals p of Ok for which A has good
reduction and @, ,, is a free abelian group of rank r has density 1/[KS°™ : K]. In particular, there do exists
prime ideals q as in the statement of Theorem 3.3.

3.4. Proof of Theorem 3.1. The theorem follows immediately from Lemma 3.2 and Theorem 3.3 (with
Remark 3.4 to show that the assumptions are not vacuous).

4. GEOMETRIC MONODROMY

Fix an abelian scheme 7t: A — U of relative dimension ¢ > 1, where K is a number field and U is a
non-empty open subvariety of P for some n > 1. Fix notation as in §2 and §3. Take a constant b4 as in
Theorem 3.1.

In this section, we will prove the following constraints on the images of the representations p 4 y when
restricted to the geometric fundamental group 711 (Ug); there is no harm in suppressing base points below
since 711 (U ) is a normal subgroup of 71 (U).

Proposition 4.1. There is an open subgroup H of 7t (Uy) such that the following hold:
(@) pa,c(H) lies in the group of Q-points of the derived subgroup of G , for all primes ¢,
(b) par(H) C Sai(Zy) forall primes £ > by.

4.1. The algebraic monodromy group. Fix a field embedding K C C. Let A — Uc be the fiber of A — U
over Uc. Associated to 7t: A(C) — U(C), we define the local system F := R'7.Z of Z-modules on U(C),
where we are viewing U(C) with its familiar analytic topology. For each u € U(C), the fiber F, of F at u
is the cohomology group H'(A,(C),Z). Fix a point ug € U(C) and define A := H'(A,,(C), Z); it is a free
abelian group of rank 2g. The local system F gives rise to a monodromy representation

0: n;OP(U(C)IMO) — Autz(A) = GL23(Z)’
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where we are now using the usual topological fundamental group. Let G be the Z-group subscheme of
GLog,z obtained by taking the Zariski closure of the image of ¢; we call it the algebraic monodromy group of
the abelian scheme A.

Lemma 4.2. The neutral component (Gg)° of the linear algebraic group Gq is semisimple.

Proof. It suffices to prove that the neutral component of G¢ is semisimple. From Deligne [Del71, Corol-
laire 4.2.9], the neutral component of G¢ is semisimple; this uses that Uc is smooth and connected and that
m: A — Ug is smooth and proper. O

Lemma 4.3. There is an open and normal subgroup H of 7t1(Ug) such that the Zariski closure of p 4 ¢ (H) in GLy, ()
is connected and semisimple for all £.

Proof. The homomorphism 71y (Uc) — 71 (Ug) induced by the embedding K C C is an isomorphism, so it
suffices to prove the lemma with K replaced by C. Recall that there is a natural isomorphism between the
profinite completion of 7T§0p (U(C),up) and 71 (Uc) (only uniquely defined up to an inner automorphism
since we are suppressing base points in our étale fundamental groups).

Take any integere > 1. Let p 4 s : 711 (Uc) — GLog(Z/(°Z) be the representation arising from the locally
constant sheaf A[(¢] of Z / (°Z-modules on Uc. By choosing compatible bases, these representation combine
to give a single representation p 4 ¢: 711 (Uc) — GLog(Z;). Let S be the Zariski closure of p 4 /(711 (Uc)) in
GLyg q,- Since A is the fiber of A above Ug, it suffices to prove the lemma with p 4 , replaced by p 4 ¢

Note that A[¢°] gives a local system of Z/¢*Z-modules on U(C) that is dual to R'7t,(Z/(¢Z), where
m: A(C) — U(C); the ¢*-torsion of A,(C) for a point u € U(C) is isomorphic to the homology group
Hy(Ay,(C),Z/¢°Z) which is dual to the corresponding cohomology group. Since R7t,(Z/(¢Z) is isomor-
phic to 7 /£°F, we find that the representation p 4 ;. : 711 (U¢c) — GLog(Z/{°Z) is isomorphic to the dual of
the representation obtained by taking the profinite completion of

AP (U(C), ug) > Glaog(Z) — Glog(Z/1°7Z).

Therefore, p 4 ¢ is isomorphic to the dual of the representation obtained from 7r§°p (U(C), up) LN Glyg(Z) C
GLag(Z,) by taking the profinite completion and extending using continuity.

Let Hy be the kernel of niOP(U(C), up) RN G(Q)/G3(Q). The Zariski closure of ¢(Ho) in GLyg g, is G,
which is connected and semisimple by Lemma 4.2. The lemma will then hold by taking H to be the profinite
completion of Hy. O

4.2. Proof of Proposition 4.1. By Lemma 4.3, there is an open and normal subgroup H of 71 (Ug) such that
the Zariski closure S; of p4 ¢(H) in GLy, () is connected and semisimple for all ¢. We have Sy C G4 and
hence S, C ijw since Sy is connected. Since Gil,f is reductive, we find that S, is contained in the derived
subgroup of GZ, ¢~ This proves (a).

Now take any prime ¢ > by. By part (a) and p4 ¢(7r1(U)) € Ga¢(Zy), we have pg(H) C Sp(Zy).
Define the homomorphism

Be: H— Sai(Zy) — By,

where By := S (Z4)/Sa(Zy)'. By Theorem 3.1(v), the group By is abelian and its cardinality divides a
positive integer Q that depends only on g. In particular, Q is independent of . So to prove (a), it suffices to
show that H has only finitely many abelian quotients whose cardinality divides Q.

The group H is the étale fundamental group of a connected variety X of finite type over K (let X — Ug
be an étale cover corresponding the subgroup H of 711(Ug)). From [SGA7.1], 11.2.3.1, we find that H is
finitely generated as a topological group. In particular, the abelianization H® of H, i.e, the quotient of H by
its commutator subgroup, is a finitely generated topological group. Viewing H?® as an additive group, the
quotient H*® /QH?’ is a finitely generated abelian group whose exponent divides Q. Therefore, H*® / QH
has finite order and hence H has only finitely abelian quotients whose cardinality divides Q.
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5. MAIN REDUCTION

Let K be a number field. Fix an abelian scheme 7r: A — U of relative dimension ¢ > 1, where U is a
non-empty open subvariety of IP% for some n > 1. Fix notation as in §2 and §3. Take a constant b4 as in
Theorem 3.1.

Define the set

B:={uc U(K):p,, ,(Galg) 2 Ss(F) for some prime £ > ba}.

The goal of this section is to prove the following proposition which reduces the proof of Theorem 1.1 to
showing that the set B C IP"(K) has density 0.

Proposition 5.1. Suppose that B has density 0. Then there is a constant C such that [p(7r1(U)) : pa,(Galk)] < C
holds for all u € U(K) away from a set of density 0.

Remark 5.2. Note that Sy ()" is a normal subgroup of G, ,(F,) while p, ,(Galk) is a subgroup of
G 4,¢(IF) uniquely defined up to conjugation. It thus makes sense to ask whether the inclusionp 4 ,(Galk) 2
S4,¢(Fy)" holds or not.

5.1. Proof of Proposition 5.1. Let W C 711 (U) be the kernel of 74 ¢ from §2.2; it is a normal and open sub-
group of 711 (U) and is independent of £ by Lemma 2.4(i). The group p4 (W)’ is thus normal in p 4 (71 (U)).
The homomorphism 74 ¢ is surjective so the integer (G4 ¢(Q¢) : G} ,(Qy)] is independent of £.

For a prime ¢ > by, we have p, ,(711(U)) 2 Sa,(IF;)". Hilbert’s irreducibility theorem implies that
Pa,0(Galk) 2 Sa(FFy) forall u € U(K) away from a set of density 0. Thus there is no harm in replacing
b by a larger integer. In particular, we may assume that by > 7and by > [y (U) : W].

Lemma 5.3. Take any u € U(K) satisfying Ga, ¢ = Gay for all £. Then for any integer m > 1, we have
PA,m (Galefl?n) = pA,m(Galg) N pau(W).

Proof. Fix a prime /|m. The kernel of the homomorphism p 4, (711 (U)) — Ga¢(Q¢)/ G5 ,(Qy) obtained
by composing the ¢-adic projection with the obvious quotient map is equal to p 4, (W). Si’milarly the ker-
nel of the homomorphism p,m(Galk) — Ga,(Qr)/Gjy, ,(Q,) obtained by composing the (-adic pro-
jection with the obvious quotient map is equal to p Au,m(GalKﬁn). From G4, = G4, and the inclusion

pa,m(Galk) C pam(m(U)), we deduce that pAu,m(GalK%m) = pa,m(Galg) Npam(W). O

Lemma 5.4. The set of u € U(K) that satisfy
pa,(Galggm)' = Sau(Zy)
for all primes £ > b has density 1. For all £ > b, we have p4 y(W)' = Sp 0(Zy)'.

Proof. Let By be the set of u € U(K) satisfying the following conditions:
(@) Ga, ¢ = Ga, for all primes /,
(b) P4, (Galk) 2 Sa () for all primes £ > by.
The set of u € U(K) satisfying (a) has density 1 by Proposition 2.3. The set of u € U(K) that satisfy (b) has
density 1 since the set B in the statement of Proposition 5.1 has density 0 by assumption. Therefore, B; has
density 1.
Take any u € By and set L := K™ Take any prime ¢ > by. It suffices to prove that p a,0(Galp)" and
pac(W) bothequal Sy ((Zy)'.
We claim that p, ,(GalL)" 2 Sa(F,)". Since L/K is a Galois extension and Sy ¢(IF)’ is a (normal)
subgroup of p, ,(Galk), the group H := Ss,(F;)' Np,, ,(Galy) is a normal subgroup of Sy (F,)" of
index at most

[L:K]=1[Ga,e(Qe): Gy, o(Qp)] =[Ga,e(Qp) : G (Qp)] = [m(U) : WI.

By our choice of by and ¢ > by, we have [Sy(F,)" : H < [m(U) : W] < by < £. Now suppose

that H # S4(IFy)’. So there is a simple group S that is a quotient of Sy ¢(IFy)’ and satisfies |S| < /.

Theorem 3.1(iv) implies that S is of Lie type type in characteristic £ and hence ¢ divides |S|. This contradicts
11



S| < ¢, so we deduce that H = Sy ¢(IFy)". Therefore, p, ,(Galy) 2 H = Sa(F;)". Since Sa(F)" is
perfect by Theorem 3.1(iv), we have p,4 ,(Gal.)" 2 Sz ¢(IF¢)" = Sa ¢ (IF¢)" which proves the claim.
Since u € By, Lemma 5.3 implies that p 4, ¢(Galr) is a subgroup of p4 (W) C G} ,(Z,). Therefore,

0a,0(Galy) Cpa (W) C G (Zy) = Sau(Zy),

where the last equality uses Theorem 3.1(iv). So to prove the lemma it thus suffices to show thatp 4, ,(Galy)" 2
Sae(Zy)'. The image of pa, ¢(Galy) in Sz ¢(IF) is p,, ,(Galy)” and hence contains Sz ¢(IF)’ by our claim.
Theorem 3.1(vi) implies that p 4, ¢(Galp)’ O Sy ¢(Z)" as desired O

Lemma 5.5. Take any prime p, any subgroup G of GLag(IF ), and any composition factor S of G. There is an integer
J, depending only on g, such that S is abelian, S is of Lie type in characteristic p, or |S| < ].

Proof. This is an immediate consequence of Theorem 0.2 of [LP11]. O

Let M be the product of all primes ¢ < max{by, |}, where ] is as in Lemma 5.5. Define the group

B:=pam(W) x [[Sae(z).
UM

After the following lemma, we will prove that p4 (W)’ is equal to B.

Lemma 5.6. Let H be a closed subgroup of B. Suppose that the projection maps H — papm(W) and H —
Sai(Zy)', with £+ M, are surjective. Then H = B.

Proof. After choosing bases of the Z,-modules Ty(A), one can identify 1 with a closed subgroup of Gng(Z).

For each integer e > 2, let 3, be the kernel of the reduction modulo e homomorphism B C Gng(Z) —
GLag(Z/eZ). We have B = lim,_ B/ B, where ¢ is ordered by divisibility. Since H is a closed subgroup of
B, it suffices to prove that H — B/, is surjective for all e > 2.

Suppose that H — B/ B, is not surjective for some ¢ > 2. We have an isomorphism B/B, = Qs x
[Term Qp of groups for which all the following hold:

e Qpand Qg (with £+ M) are finite quotients of p4 p(W)" and Sy ¢(Z,)’, respectively,
e Q/ = 1for all but finitely many primes ¢ { M,
e the projection maps H — B/B, — Qpmand H — B/B, — Q, (with £ { M) are surjective.

The last condition uses our assumptions on H in the statement of the lemma.

Since H — B/ B, is not surjective, there is an integer b > 1 relatively prime to M and a proper subgroup
Hy of Qm X [Ty Qe such that the projection map Hy — Q is surjective for all m € {M} U{¢ : {|b}.
So there are non-empty and disjoint subsets I; and I, of {M} U {¢ : ¢|b} and a proper subgroup H; of
[Tner, Qm X Ilner, Qm such that the projection map Hy — [1,c1, Qm is surjective for each i € {1,2}.

Set G; := [lper, Qm for 1 < i < 2. Let N and N’ be the kernel of the projection maps H; — G
and H; — Gy, respectively. We have H; C G; x G, and hence N C Gy x {1} and N’ C {1} x G,. We
can thus identify N and N’ with normal subgroups of G; and G, respectively. By Goursat’s lemma (see
[Rib76, Lemma 5.2.1]), the image of Hy in G /N x G,/N’ is the graph of an isomorphism G; /N = G,/N'.

Suppose that G; /N and G,/ N’ are both trivial. We have N = G; and N’ = G, and hence H; = G; X Gy.
However, this contradicts that H; is a proper subgroup of G; X Gp. Therefore, there is a simple group S
that is isomorphic to a quotient of both Gy and G,. In particular, there are distinct mq, my € {M} U {¢: {|b}
such that S is isomorphic to a quotient of both Qy;, and Qy;,. We may assume that m, = / is a prime not
dividing M.

Since ¢ { M, every simple quotient of Q,;, = Qy is non-abelian and of Lie type in characteristic ¢ by
Theorem 3.1(iv). Therefore, S is a non-abelian simple group of Lie type in characteristic /.

Suppose that m; is a prime p that does not M. By the same argument, S is also a non-abelian simple
group of Lie type in characteristic p. However, there are no simple groups that are of Lie type in both
characteristic £ and p, where ¢ and p are distinct primes with £ > 7 (we have ¢ > 7 since ¢ { M). This
contradiction implies that m7 = M. In particular, S is a non-abelian group that is a quotient of Q»; and
hence also of p4 p(W)'.
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Define m := [] {. The kernel of the quotient homomorphism
PA,M(W)/ c AUth (Tm (A)) — AutZ/mZ(Tm (A) /me (A)) = HP\M GLZg (IFP)

is a product of pro-p groups with p|M; in particular, it is prosolvable. So there is a prime p|M and a
subgroup G of GLyg(IFp) such that S is isomorphic to a composition factor of G. Since S is non-abelian,
Lemma 5.5 implies that S is of Lie type in characteristic p or satisfies |S| < J. The group S cannot be of Lie
type in characteristic p since again there are no simple groups that are of Lie type in both characteristic £ and
p, where ¢ and p are distinct primes with £ > 7. Therefore, |S| < J. Since S is of Lie type in characteristic /,
it has an element of order ¢ and hence ¢ < |S| < J. However, this contradicts that £ { M. This contradiction
proves that H — B/ B, is surjective for all e > 2 as desired. O

Lemma 5.7. We have p4(W)' = B.

Proof. Take any prime ¢ > by. By Theorem 3.1(ii), we have pa (m(U)) 2 Sae(Zy). We thus have
inclusions

(5.1) Sai(Zy) Cpar(W) C Gy (Zy).

By Theorem 3.1(iv), the commutators subgroups of both S4¢(Z,)" and G; ,(Z,) are equal to Sz (Z;)".
Taking commutators of the groups in (5.1), we deduce that p4 (W) = Sa ¢(Z)".

We can identify p 4 (W) with a closed subgroup of p4 v (W)’ X [Ty p4,¢(W)" = B. Since the projections
of pA(W)" to pam(W) and pa ¢(W)' = Sa¢(Z,)’, with £ { M, are surjective, we deduce that po(W) = B
by Lemma 5.6. O

Lemma 5.8. The set of u € U(K) for which p 4, (Galg) 2 pa(W)' holds has density 1.

Proof. Take any u € U(K) that satisfies all the following conditions with L := K"

(@) Ga,¢=Gayforall’,

(®) pa,m(Galk) = pam(m(U))

(C) pAu,g(GalL)’ = SA,g(Zg)/ for all /¢ Z bA
By Lemma 5.3 with (a) and (b), we have pa, m(Galr) = pa,,m(Galg) Npam(W) = pap(W). In particular,
pa,m(GalL) = pam(W)'. From this and (c), we deduce that p4, (Galy)’ is a closed subgroup of B =
pAMW)" X TTym Sa,e(Zy)' for which the projection maps to p4, v (W) and Sz ¢(Z,)', with £ { M, are all
surjective. By Lemmas 5.6 and 5.7, we have py4, (Galy)' = B = pa(W)'.

To complete the lemma, it thus suffices to show that the set of u € U(K) that satisfy each of the conditions
(a), (b) and (c) has density 1. The set of u € U(K) that satisfy (a) has density 1 by Proposition 2.3. The set of
u € U(K) that satisfy (b) has density 1 by Lemma 2.2(i). The set of u € U(K) that satisfy (c) has density 1
by Lemma 5.4. O

Let
Ba: m(U) = pa(m(U))/pa(W)'
be the surjective homomorphism obtained by composing p 4 with the obvious quotient map.

Lemma 5.9. The group B, (1 (Ug)) is finite.

Proof. We need to prove that there is an open subgroup H of 7 (Ug) such that p4(H) is contained in
pa(W) = B = pam(W)" xTTym Sa(Z;)'. By Proposition 4.1, there is an open subgroup H of 7 (Ug)
such that p4 /(H) C Sa(Z;)" for all £ > bu. It thus suffices to show that there is an open subgroup H of
m1(Ug) such that pa p(H) € pam(W)'.

The group pa,m(W) is open in [y a G} ,(Qy) since p4,¢(W) is open in G ,(Qy) for all £|M (note that
each p4 ¢(W) has an open pro-¢ subgroup). For each /, let S4 ; be the derived subgroup of G3 ¢ Note
that for every open subgroup H of G}, ,(Q), the commutator subgroup H' is open in S ,(Qy), cf. [HL15,
Proposition 3.2]. Therefore, p 4,1 (W)" is an open subgroup of [Ty S4,¢(Qy)-

By Proposition 4.1, there is an open subgroup H of 711 (Ug) such that p4 m(H) C TTym Sa,e(Qe). Since

pam(H) is compact in [TpS4,0(Q¢) and pam(W)" is open in ITem S4,6(Qe), we find that pa pm(H) N
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pam(W)'is a finite index subgroup of p4 a1 (H). So after replacing H by a suitable open subgroup, we will
have p,m(H) € pam(W)'. 0

Let C be the cardinality of f4(m(Ug)); it is finite by Lemma 5.9. Take any u € U(K) for which
pa,(Galg) 2 pa(W)". We will now show that [p4 (711 (U)) : pa,(Galg)] < C. Since the set of u € U(K)
satisfying p4, (Galk) 2 pa (W) has density 1 by Lemma 5.8, this will complete the proof of the proposition.

Let Ba,: Galgk — pa(mi(U))/pa(W)' be the homomorphism obtained by specializing 4 at u. We have

loa(mr(U))/pa(W)" = Bau(Galk)] < C

since the homomorphism

(U) 25 (pa(m (U))/pa(W)')/Ba(m (Ug))

is surjective and factors through Galg (in particular, its specialization at a point u € U(K) is independent
of the choice u). Since p4, (Galg) 2 pa(W)’, we have

loa(m1(U)) = pa, (Galk)] = [pa(mr1(U))/pa(W)" < pa, (Galk)/pa(W)']
= lpa(m(U))/pa(W)" : Bau(Galk)]
<C.
This completes the proof of Proposition 5.1.

Remark 5.10. The above constant C is precisely the one described in §1.2. With notation as in §1.2, the group
M s equal to p4 (W). In §9, we will show that the set B has density 0 and this will imply, by Proposition 5.1,
that Theorem 1.1 holds with this particular constant C.

6. EXPLICIT HILBERT IRREDUCIBILITY

Let U be a nonempty open subvariety of Py for some integer n > 1, where K is a number field. Let
o: 7T1(U) — G

be a continuous and surjective homomorphism, where G is a finite group. For each point u € U(K), we
obtain a homomorphism p,: Galg — G by specializing p at u; it is uniquely defined up to conjugation by
an element of G.

Let G, be the image of 711 (Ug) under p; it is a well-defined normal subgroup of G. Let L be the minimal

extension of K in K for which Gy is the image of 771 (UL, ). We have a natural short exact sequence

1 Gy — G5 Gal(L/K) — 1.

Let U be the open subscheme of IPy; that is the complement of the Zariski closure of Py — U in IPj, .
The Ok-scheme U has generic fiber U. Fix a finite set . of non-zero prime ideals of Ok such that p arises
from a continuous homomorphism ¢: 711 (Up) — G, where O is the ring of .”-integers in K.

Theorem 6.1. With notation as above, fix a Galois extension F C L of K and a set C C G that is stable under
conjugation by G. Define

|C Nkl
0 := max ,
K |Gg|

where x varies over the Gg-cosets of ¢~ ' (Gal(L/F)). Assume that 6 < 1. Then for x > 2,

[{u € U(K) : H(u) < x, pu(Galg) C C}| <y pps x"HV/2IKQ Jog iy 4 | 7|41t 4 |C21+2 . |Gy 414,

Recall that Hilbert’s irreducibility theorem implies that p,(Galx) = G for all u € U(K) away from a
set of density 0. Corollary 6.2 shows how Theorem 6.1 can be viewed as an explicit version of Hilbert’s
irreducibility theorem.

Corollary 6.2. For x > 2, we have

[{u € U(K) : H(u) < x, pu(Gali) # G}| <y, 6 ¥KQH1/2) logx 1 |74,
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Proof. For each u € U(K), the quotient map p,(Galk) — G/Gg is surjective. So if p,,(Galk) # G, then
pu(Galg) is contained in a maximal subgroup M of G for which M — G/ Gg is surjective. It thus suffices to
bound [{u € U(K) : H(u) < x, pu(Galk) C Ugec gMg~1}| for any such M; the corollary will then follow
by summing over all M (the number of such maximal subgroups can be bounded in terms of |G|).

Take any maximal subgroup M of G for which the quotient map M — G/ Gy is surjective. Define C :=
Ugec §M ¢l = Ugeg, gMg~1, where the last equality uses our assumption that M — G/ Gy is surjective.
We have CN Gy = Ugeg, §(MN Gg)g™ ! since G, is normal in G. The group M N G, is a proper subgroup
of Gy since M # G and M — G/Gy is surjective. Jordan’s lemma ([Ser03, Theorem 4’]) implies that
}(iﬂ Gg # Gg. In particular, § := [CN Gg|/|Gg| <1—-1/|Gg| < 1. Applying Theorem 6.1 with F = L, we

ave
[{u € UGK) s H(u) < %, pu(Gal) € C}| <y g xKQ0H1/2) jog x 4 7 jin 4

as desired. 0

6.1. Equidistribution over finite fields. Fix a finite field IF; of cardinality 4 and denote its characteristic by
p. In this section, we denote by U a smooth affine variety over IF; that is geometrically irreducible and has
dimension d > 1. Take positive integers N, r and ¢ such that UE is isomorphic to a closed subscheme of

N defined by the vanishing of 7 polynomials of degree at most J.

Consider a surjective continuous homomorphism

o:m(U) =G,
where G is a finite group. Define G¢ := o(m; (UE)); it is a normal subgroup of G. We have a natural short
exact sequence
1 Gg — G &5 Gal(Fye /Fy) — 1

for some e > 1. Let k be the Gg-coset of G that is the inverse image of the g-th power Frobenius automor-

phism Frob, € Gal(IF; /IF;) under ¢. If U(IF;) # @, we can also characterize « as the unique Gg-coset of G
that contains p(Frob,,) for all u € U(F,).

Theorem 6.3. Fix notation as above and assume that p t |Gg|. Let C C « be a set stable under conjugation by G.
Then

|{u € U(F,) : o(Frob,) € C}| = ||G| |U(Fy)| + O, (IC17/2(Glg™172).

Proof. (Sketch) This is essentially Theorem 1.1 of [Kow06a] due to Kowalski; the key difference is that we
are more explicit with the dependencies in the implicit constant (we also have |G| in our error term instead
of |G|). We now sketch the minor changes that need to be made in Kowalski’s proof.

Choose any prime / # p. Let V — MR, be the finite étale Galois covering with group G, corresponding to

the surjective homomorphism 71y (UE) uN Gg. By Propositions 4.5 and 4.4 of [Kow06b] and using p { |Gg|,

we have
oe.(V,Qy) : ZdlmH (V,Qq) < c¢(N,1,6) - |Ggl,

where ¢(N, r,6) is a constant depending only on N, r and J. Moreover, [Kow06b] gives an explicit value of
¢(N,r,d). Proposition 4.7 of [Kow06b] and its proof imply that

6.1) o (Ug ZHl ) <¢(N,r,6) - |Gg| - dim 7

for any representation 71: Gg — GLgim ~(Qy), where 7(p) denotes the lisse Q/-sheaf corresponding to

mTop: mM (UE) — GLgim 7 (Q¢). Examining the proof of Theorem 1.1 of [Kow(06a] with the bound (6.1), we

have

C|

[Gel

which gives the theorem. O
15

[{u € U(F,) : p(Froby) € C}| — ;= [U(Fy)|| < c(N,r,8) - |C['/2|Gg[*/ 24" 1/2



6.2. Sieving. Fix a subset B C P"(K) with n > 1. Let X be a set of non-zero primes ideals p of Ok with
positive density. Let . be a finite subset of X.. Suppose that there are real numbers 0 < § < 1and ¢ > 1such
that the image of the reduction modulo p map B — P"(IF,,) has cardinality at most N (p)" + cN(p)"~1/2
forallp e ¥ —.7.

The follow proposition uses the large sieve to bound |{u € B : H(u) < x}|; we will use it later to prove
Theorem 6.1.

Proposition 6.4. Fix notation and assumptions as above. For x > 2, we have
[{u € B:Hu) <x}| <gny (1—08)71 x(1/2KQ ogx 4 |.77[#1+4 4 (1 — §) L)t
Proof. Foreacha = (ay,...,a,41) € OF™, define

a]| := 1Srlnganx_~_1 max lo(a;)],

where ¢ runs over the field embeddings K < C. Note that ||| extends uniquely to a norm on O @z R.
Let B’ be the set of a € O™ — {0} for which the image of a in P"(K) lies in B. We first bound the
number of a € B for which |[a| < x. For a non-zero prime ideal p of Ok, let By, be the the image of B’ under

the reduction modulo p map O% ™ — Fjt!. Define wy := 1 — |B},|/N(p)"*!. We may assume wj, < 1 since
otherwise B = @ and the proposition is trivial.
Now suppose p € X — .. Using our assumption on the image of B modulo p and ¢ > 1, we find that

Byl < (6N(p)" +eN(p)" /%) - [Fy | +1 < ON(p)"* + cN(p)"+!/2
and hence |B},|/N(p)"*1 < 6+ ¢/N(p)/2. If N(p) > 4c?/(1 — 6)?, then
[Byl/N(p)"™! < 6+c/(4/(1-6))2 = (1+6)/2

and hence wy, > (1—10)/2.
Since X has positive density, there is a constant b > 1 depending only on X such that

HpeXL—:y/2<N(p) <y} >z y/logy
holds for all real y satisfying y > band y > |.#|2.

o First take any x > 2 satisfying

xKQ/2 > max{b, |.7[?,8c¢* /(1 — 6)%}.
The large sieve ([Ser97, §12.1]) implies that for any Q > 1, we have
max{x("+DIKQ] Q2(n+1)}

L(Q) '

6.2) {a € B : ||a] < x}| <kn

where

and the sum is over the square-free ideals a of Ok with norm at most Q. We interpret (6.2) as being the
trivial bound +oc0 when L(Q) = 0.

Set Q := x[KQ/2, Take any prime p € ¥ —.% with Q/2 < N(p) < Q. We have N(p) > %x[K:QVZ >
4c?/(1 - 6)? and hence wy, > (1 —§8)/2. Since /(1 — t) is increasing on the interval [0, 1), we have wy /(1 —
wp) > ((1-6)/2)/(1—(1-10)/2) = (1—6)/(1+ ). Therefore,

1-6_1-6
LQ> Y {525 HPeZ-7:Q2<N@p) <Q}
per—v
Q/2<N(p)=<Q

We have Q = xKQ/2 > max{b,|.7|2} and hence L(Q) > (1 —6)Q/logQ >k (1 —8) xKQ/2/]og x.
From (6.2), we deduce that

{ae B : |a| <x}| <gny, (1—6)" 1 x1+1/2)[KQ og x,
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e Now suppose that x > 2 satisfies x/K'Q/2 < max{b, |.#|2,8c2/(1 — §)?}. Therefore,

{ae B :la] <x}| <|{a€OF": a] <x)
<pp xmDIKQ

< (max{b, |.|?,8c*/(1 — 6)2})>"*2,
Combining both cases for x > 2 and using b <y, 1 gives
63)  {aeB :|a] <x} <gux (1—0)7" - 2 FVDKQ ogy 4 7|44 4 ((1—5) Loy,

By the proposition in §13.4 of [Ser97], there is a constant ¢/, depending only on K and 7, such that each
u € P"(K) is represented by a tuple a € Q%! with || < ¢’H(u). In particular, we have |{u € B : H(u) <
x}| <|{a € B": |a| < c’x}|. The proposition now follows directly from (6.3) and ¢’ <k , 1. O

6.3. Proof of Theorem 6.1. We may assume that the set C is non-empty since otherwise the bound in the
theorem is trivial.

Lemma 6.5. There is a finite set .71 of non-zero prime ideals of Ok, depending only on U C IP%, such that
o(m (U, )) = Gg for all non-zero prime ideals p ¢ .7 U . of Ok satisfying p 1 |Gg|.

Proof. Define the closed subvariety Z := Py — U of Py. Let Z be the Zariski closure of Z in IPy, ; its
complement in IP{, is /. For a commutative ring R, let Grg(1,n) be the Grassmannian of lines in IP%. In
§4H1 of [LSTX19], a closed subscheme W of Grp, (1,7) is constructed such that for each Ok-algebra R and
line £ € (Grp, (1,1n) — W)(R), the scheme theoretic intersection £ N Zy is finite and étale over Spec R. We
have W # Grp, (1,n) by Bertini’s theorem. Let .#; be the (finite) set consisting of all non-zero prime ideals
p of Ok for which Wk, # Gro, (1, n)]pp. Note that .#; depends only on U C P%.

Now take any non-zero prime ideal p ¢ . U .71 of O satisfying p 1 |Gg|. Let Op" be the ring of
integers in the maximal unramified extension of K" of Ky, in a fixed algebraic closure Ky,. The ring Op" is
a complete discrete valuation ring with residue field IF,. Take any line L € (Grp, (1,1n) — W)(IE,). Since
Groy (1,n) is smooth and W is a closed subscheme, there is a line £ € (Grp,(1,1n) — W)(Op") whose
image in (Gro, (1,1) — W)(Fy) is L. Define the Oy"-scheme V' := Uoyn N L. Wehave V = L — D, where
D:=LnN Zogn. Observe that D is finite étale over Spec (9;‘“ since L ¢ W(Ogn).

We claim that the homomorphism

m(Vg,) = m(Ug, NLg) = m(Ug) =G

has image G,. Fix an embedding Kp C C. To prove the claim there is no harm in replacing IZ,, by the larger

algebraically closed field C. By Bertini’s theorem, the homomorphism 73 (Uc N L) — 1 (Uc) % G has
image G, for a generic line L € Gr¢(1,7)(C). The above claim follows by (topologically) deforming £ in
Gre(1,n)(C) to a generic line; note that small changes in £ do not change the image of the representation
since £ intersects Z(C) only at smooth points and transversally at each of these points.

Choose a pointag € V(Fy) withalifta; € V(Op"). Since D is finite étale over Spec Op", the Grothendieck
specialization theorem implies that the natural homomorphisms

m (Vgn, a1) — m1(Voyn, a1) = m1(V,, a0)
induce an isomorphism between the prime to p = charF,, quotients of 7y (VKp,al) and 7'(1(VR,&10). In the

present setting, an accessible proof of Grothendieck’s theorem can be found in [Wew99, §4]. Therefore, the
homomorphism

(6.4) m(Vg, a0) = m(Vog, a1) = mi (U, a1) e

has the same image as 713 (VKp,al) — m Vo, a1) = m (U, a1) 2, G which is Gg¢ by our claim (we have

p 1|Gg| since p 1 |G¢| by assumption).
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We have thus proved that the image of 71 (Z/[@p NL) — m (L{R) % Gis Gg foralllines L € (Gro, (1,1) —
W)(IFy). Since p ¢ .71, (Gro, (1,1n) — W)Fp is a non-empty open subvariety of Grp, (1, n)@p. By Bertini’s

theorem, we deduce that 71y (MR) 2 G has image Ggq. O

Let X be the set of non-zero prime ideals p of Ok that split completely in F; it has positive density by the
Chebotarev density theorem.

Lemma 6.6. For any non-zero prime ideal p € ¥ — 7 of Ok satisfying p 1 |G|, we have
[{u € P"(Iy) : u & U(Fy) or o(Froby) € C}| < ON(p)" + Ou(|C[/2|Gg N (p)" /).

Proof. We canview Af, = Spec Oklx1, ..., x| asan open subscheme of P{; via the morphism (ay, ..., a,) —
[a1,...,au,1]. There is a non-zero polynomial f € Ok|[x3, ..., x,] that is squarefree in K[xq, ..., x,,| such that
U’ := Spec(Ox|x1, ..., xn][f1]) is an open Og-subscheme of I{. There is a finite set .#» of non-zero prime
ideals Ok such that for all non-zero prime ideals p ¢ .75 of Ok:

e Uy is an open affine subvariety of P}, of dimension n that is geometrically irreducible,

p P
o Z/l]{:p is isomorphic to the closed subscheme of Aﬁﬂ«:’“l = SpeclFp[x1,...,Xn, X,+1] defined by the equa-
tion f(x1,...,%,) - x,41 = 1, where f is obtained from f by reducing its coefficients modulo p.

Note that f and .% are choices that depends only on U C P%.

Now take any prime ideal p € X — .7 satisfying p { |G¢|. Let -1 be a set of prime ideals from Lemma 6.5.
Since .77 and .3 depend only on U C IP¥, we may further assume that p ¢ .74 U .%; the lemma holds for
the finite number of excluded prime ideals by suitably increasing the implicit constant. Similarly, we may
also assume that ¢/’ (IF;, ) is non-empty.

From g, we obtain a continuous homomorphism g, : 71 (U, ) — G. We have gy, (LIR) = G4 by Lemma 6.5
and p 1 |Gg/|. Since Z/[]{:p is a non-empty open subvariety of U, , we can restrict ¢, to obtain a homomorphism
1 (Uy, ) — G that satisfies g, (711 (U ) = 0p(m1 (MR)) = Gg.

P P

There is a unique Gg-coset x of G such that g, (Frob,) € « for all u € U'(IF,). By Theorem 6.3, applied to

the affine variety Z/l]f;p and the representation p), (and using p { |Gg|), we have

|{u € U'(F,) : o(Frob,) € C}| = |[{u € U'(Fy) : 0p(Frob,) € CN«}|
_|Cnx|
|Gyl

U ()| + Ou(|CI 2| Gg N (p)"1/2);

note that the implicit term depends only on U C IP% since LI(f is isomorphic to a closed subscheme of A%H
P P

defined by the polynomial equation f(x1,...,x) - X,+1 = 1, where f is a choice depending only on U.
Take any u € U(IFy). Since p splits completely in F, we have (¢ o gy )(Froby,) € Gal(L/F). Therefore,
k C @ '(Gal(L/F)). We thus have |CN«|/|G¢| < & by the definition of . Using this and |U'(IF,)| =
N(p)" + Oy (N(p)"~1/2), we find that
|{u € P"(Fy) : u ¢ U(F,) or o(Frob,) € C}|
< [{u € U'(Fy) : o(Froby) € C}| + [P"(IFy) — U'(F,)]
<ON(p)" + Ou(|C[V|GgIN(p)"~/2),
where since C # @ we can absorb the various error terms. |
Define the set
B:={u € U(K) : p,(Galg) C C}.
For each p € ¥ — .7, denote by B, the image of B under the reduction modulo p map U(K) C P*(K) —
P"(IF, ). Let ./ be the finite set of primes p € X that lie in . or divide |Gg]|.
Take any p € ¥. —.#" and u € B. Denote by u, € P"(IF) the image of u modulo p. If u, € U(F,), then

pu(Froby) = ¢(Froby, ). Since u € B, we deduce that u, ¢ U(IFy) or ¢(Frob,,) € C. By Lemma 6.6, we
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deduce that
[By] < ON(p)" + Our(|C[M2|Gg N (p)"1/2)

forall p € ¥ —.#'. Take any x > 2. By Proposition 6.4, we have
[{u€B:H(u) < x} <y (1-0)1 xH/2DKQ gy 4|74 1 ((1—5)71|C[V/2|Gg)*
<5 x(1+1/2)[K:Q] log x + ‘y/‘4n+4 + |C|2n+2 . |Gg|4n+4
<n x(n+1/2)[K:Q] logx+ |y|4n+4 + |C|2n+2 . |Gg|4”+4,
where the last inequality uses that [.#/| = || 4+ O(log |Gg¢|) and C # @.

7. DERANGEMENTS

Let G be a linear algebraic group defined over a finite field IF, for which its neutral component G° is
semisimple and adjoint. Let S be the commutator subgroup of G°(IF,). Fix a group H satisfying
S C H C G(Fy)
and fix a normal subgroup H, of H. Define Hy := H N G°(IFy); it is a normal subgroup of H that contains
S. Let r be the rank of G° and define m = [G(F;) : G°(FF;)].

Proposition 7.1. With notation as above, let M be a subgroup of H for which M 2 S and for which the natural
homomorphisms M — H/Hg and M — H/Hy are surjective. Define the subset

C:= |J hMn!
heH
of H. Then there is a constant 0 < 6 < 1, depending only on r and m, satisfying
|C Nkl

7.1)

for every Hg-coset x in Hy - Hy.

We will prove Proposition 7.1 by repeated reducing to simpler cases. Proposition 7.1 will be used to
prove a specialized version of Hilbert’s irreducibility theorem (Theorem 8.3). The notation Hg is chosen
because in our applications, H will be the image of an arithmetic fundamental group and Hy will be the
image of its geometric subgroup.

7.1. A theorem of Fulman and Guralnick. Consider a finite group H acting on a set (). An element h € H
is called a derangement on () if it has no fixed points. For a non-empty subset B C H, let 4(B,Q)) be the
proportion of elements in B that are derangements on ).

The following is a slight variant of a result of Fulman and Guralnick.

Theorem 7.2 (Fulman-Guralnick). Let G be a connected, geometrically simple and adjoint linear algebraic group
of rank r defined over a finite field F,. Let S be the commutator subgroup of G(IF,) and fix a group S C H C G(IF;).
Fix a maximal subgroup M of H satisfying M 2 S and define O = H/M with H acting by left multiplication. Then
for every S-coset x in H, we have

5(x,Q) > 6+ 0,(1/)
with 0 < 0 < 1 a constant that depends only on r.

Proof. Since G is geometrically simple and adjoint group, by taking g sufficiently large in terms of r, we
may assume that S is a non-abelian simple group and that H has socle S. Conjugation on S allows us to
view G(IF;), and hence also H, as a subgroup of the automorphism group of S. Our theorem is then a
consequence of Corollary 7.4 in [FG12] and the remark following it; note that since H C G(IF;), H lies in
the group of inner-diagonal automorphisms of S.

Remark 7.3. With notation as in Theorem 7.2, define the set C := (J,cy hMh 1. Left multiplication gives a
transitive action of H on (2 = H/M. Note that an element x € H fixes a coset tM € H/M if and only if
x € hMh~!. So an element x € H is a derangement on () if and only if it does not lie in C. In particular, for
any S-coset x in H, we have 6(x, ) =1 — |CN«k]|/|S].
Similarly, we could reformulate Proposition 7.1 in terms of derangements.
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7.2. Proof of Proposition 7.1. Since G° is a connected and adjoint, we have G° = []" ; G;, where the G;
are connected, adjoint and simple groups defined over Fy. We have S = S X --- X S, where S; is the
commutator subgroup of G;(IF,).

By excluding a finite number of primes ¢ that depend only on r and m, we may assume that all the
groups S; are non-abelian and simple and that £ > m. Since S; contains an element of order ¢, we have
|Si| > ¢ > m > [H : Hp]. Note that the proposition holds for the finite number of excluded primes by
increasing the implicit constant.

Lemma 7.4. The natural map M0 S — S/(S N Hg) is surjective.

Proof. We claim that S; is not isomorphic to a composition factor of M/ (M N S) forany 1 < i < n. Take any
1 <i < n. To prove the claim it suffices to show that neither of the groups M /(M N Hy) or (M N Hy)/(MN
S) have a composition factor isomorphic to S;; note that Hy is a normal subgroup of H that contains S.
The group S; is not a composition factor of M/(M N Hy) since [M : MN Hy] < [H : Hy] < m < |Sj|.
The group S; is not a composition factor of (M N Hy)/(M N S) since we have an injective homomorphism
(MNHp)/(MnNS) < Hy/S and Hy/S is abelian. This proves the claim.

Let By, ..., B be the composition factors of S/ (SN Hy) = (SHy)/ Hg. Note that each B; is isomorphic to
some S;.

Let ¢: M — H/H, be the quotient homomorphism. We have ¢(MNS) C (SHg)/H,. The groups
Bi,..., By occur, with multiplicity, as composition factors of ¢(M) since ¢ is surjective by our assump-
tions on M and (SHg)/ Hg is normal in H/Hg. By the claim, the group M/ (MNS), and hence also
@(M)/¢@(MNS), has no composition factors isomorphic to any B;. Therefore, the groups By, ..., By oc-
cur, with multiplicity, as composition factors of (M N S). In particular, [¢(M N S)| > |By|--|Bu| =
|(SHg)/Hg|. Since (M N S) C (SHg)/ Hyg, this implies that ¢(M N S) = (SHy)/ H,. The lemma follows by

noting that (SHy)/Hy =2 S/(S N Hg). O
Define the subgroup My := M N Hy of Hy and the subset
(7.2) Co:= |J hMoh™!
heH,

of Hy. We have M NS = My N S since S is a subgroup of Hy. Therefore, My 2 S. The natural homo-
morphism My NS — S/(S N Hy) is surjective by Lemma 7.4. This surjectivity and My 2 S implies that
SN Hg # 1. The following lemma will be used to reduce to a setting where the group G is connected.

Lemma 7.5. Let k be any coset of Hg in Hy - Hg. Then there is a coset ko of S N Hg in Hy such that

‘CﬂK|<1 1 1 |C0ﬂKo|
|Hg| — e e [SNH|’

(7.3)

where e := [Hg : SN Hy].

Proof. We have x N Hy # @ since « is a Hg-coset in Hp - Hg. Therefore, there is a S M Hg-coset %o of Hp
satisfying ko C x. Since « is the disjoint union of e different S N H¢-cosets, one of which is kg, we have

|ICNxk| < (e—1)|SNHg|+|CNxo| = [Hg| — |SN Hg| + |C o,

where the inequality uses the trivial upper bound for the S N Hg-cosets that are not xg. Dividing by |Hy|,
we deduce that [CN«k|/|Hg| <1—1/e+1/e-[CNxgl/|SN Hg|. So to prove (7.3), it suffices to show that
CNxg = CoNkp.

Since k9 € Hp and Cyp C Hy, it thus suffices to show that CN Hy = Cp. Using that M — H/Hj is
surjective, we find that C = Uy, iMh ™. Therefore, C N Hy = Upep,h(M N Hy)h ™! = Cp as desired. O

Proposition 7.6. Take any subgroup My of Hy satisfying My 2 S for which My N'S — S/(S N Hy) is surjective.
Define the subset Cy := Upen, hMyh~Y of Hy. Then for any coset kg of S N Hg in Hy, we have
|C1 Nxol

S| <8y +0,(1/0)
8

with 0 < §g < 1 depending only on r.
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Suppose that Proposition 7.6 holds. Take any Hg-coset « in Hy - Hg. By Lemma 7.5, there is a (S N Hy)-
coset ko in Ho such that (7.3) holds. Proposition 7.6, with M; = My, implies that |Co Nxg|/|S N Hg| <
Jp + O;(1/¢) holds with a constant 0 < §y < 1 depending only on r. From (7.3), we deduce that

|C Nkl

| Hy|

withd:=1-1/e+6dy/e=1+(—1+78y)/e. Wehave 0 < § < 1since 0 < §y < 1. We have
e < [G(Fy):S] <m-[G°(IFy) : S] < m.

So 6 < 1 depends only on r and m. This completes the proof of Proposition 7.1 assuming Proposition 7.6.

<5+0,(1/0)

It thus remains to prove Proposition 7.6. Note that the only role that Hy plays in the proposition is
through its subgroup S N Hg, so without loss generality assume that H, is a normal subgroup of S. Take
any subgroup M; C Hy such that M; 2 S and such that My NS — S/(SN Hg) = S/Hy is surjective. We
thus have Hy # 1. Define C; := Ujep, hMih~!. Since the proposition now only concerns subgroups of
G°(FF;), we may assume without loss of generality that G is connected and hence that H = H.

Lemma 7.7. It suffices to prove Proposition 7.6 with the additional assumption that the projection homomorphism
M1 NS < S — [lje; S; is surjective for all proper subsets ] C {1,...,n}.

Proof. Since My 2 S, there is a minimal (non-empty) subset I C {1,...,n} for which the projection M; N
S — [T;e1 Si is not surjective. Define the projection

¢: G(Fy) = [ [;c,Gi(F) = G(Fy),
where G := [[ic; G;. Define the groups H := ¢(H), Hy := ¢(Hg) and My := ¢(M;). The group ¢(S)
equals S := [T;c; S;- By our choice of I, we have M; 2 S. The natural homomorphism M; NS — S/ Hg is
surjective and hence so is My NS — S/ Hs.

Take any coset kg of SN Hy = H, in H. Define &y := ¢(ko); it is a coset of Hy in H. The map xy — o,
x > ¢(x) is b-to-1 with b := |H,|/|Hg|. Therefore,

Cimol _ lo(C1) N (o)l -b _ g(C1)NRol b _ |C1 o

|Hg| — | Hg| |Hg|'b |Hg| ’
where C; := UhGHhMlh_l.

The inequality (7.4) shows that is suffices to prove Proposition 7.6 with (G, H, Hy, M1) replaced by
(G, H, Hy, My); note that we have already verified the required properties and that the rank of G is at
most the rank of G. By the minimality of our choice of I, the projection My NS — []¢; S; is surjective for
each proper subset | C I. The lemma is now immediate. O

(7.4)

By Lemma 7.7, we may now assume that the projection My NS — [];c; S; is surjective for every proper
subset J C {1,...,n}.

Lemma 7.8. To prove Proposition 7.6, it suffices to assume that n = 1 or that n = 2 and there is a group isomorphism
f:S1 — Sysuch that My NS ={(s, f(s)) :s € S1}.

Proof. Suppose that n > 3. Then the projection M; NS — S; x §; is surjective for all distincti,j € {1,...,n}.
Since the groups S; have no nontrivial abelian quotients, Lemma 5.2.2 of [Rib76] implies that M1 NS = S.
However, this is a contradiction since My 2 S by assumption. Therefore, n < 2.

Suppose that n = 2. The projection M; NS — S; is surjective for i € {1,2}. Using that M; 2 S and
that the non-abelian groups S; are simple, Goursat’s lemma ([Rib76, Lemma 5.1.1]) implies that M; NS =
{(s,f(s)) : s € S1} for some group isomorphism f: S; — S. O

By Lemma 7.8, we may assume that n < 2.
e First consider the case n = 1. Since H is a non-trivial normal subgroup of S = S1 and §; is simple, we
have Hg = S. Take any coset kg of SN Hg = S in Hy.
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Since n = 1, the connected and adjoint group G is simple. There is an integer ¢ > 1 and a connected,
geometrically simple and adjoint linear algebraic group G defined over F. such that G is isomorphic to the
Weil restriction Resg,, /i, (G), cf. [KMRT98, Theorem 26.8]. Without loss of generality, we may assume that
G = Resg,, /F, (G) and hence G(IFy) = G(Fy). In particular, we can view S as the commutator subgroup of
G(Fe), and Hyp and M; as subgroups of G(FFe).

Define C1 = Ujen, hMih~!. Let H; be the subgroup of Hy generated by M; and S; it is a normal
subgroup of Hy. If ko N H; = @, then C; N kg = @ and the bound of Proposition 7.6 is trivial for the coset
ko. S0 we may assume that xg is an S-coset in Hy. Since M; — H; /S is surjective, we can replace M; by
a maximal subgroup of Hy; it still will satisfy the conditions of Proposition 7.6 and the set C; will only get
larger.

gNote that the rank of G is at most r. By Theorem 7.2 and Remark 7.3, applied with the algebraic group
G/IF s, we have

|C1 N K0| _ |C1 ﬂKo|
|S 1 Hgl S|
with a constant 0 < § < 1 depending only on 7. This completes the proof of Proposition 7.6 in the case n = 1.

=1—68(xg, Hy /M) <1—5+0,(1/0)

e Finally, consider the case n = 2. Since Hy # 1is a normal subgroup of S, Hg is equal to {1} x Sy, 51 x {1}
or 51 x Sy. The following lemma allows us to make some further reductions.

Lemma 7.9. It suffices to prove Proposition 7.6 in the case n = 2 with G; = Gz, Hy = Sy x {1} and M; =
1(8/8) 18 € Gi(IEr)}-

Proof. Using Lemma 7.8, we make an identification S; = S, of abstract groups so that M1 NS = {(s,s) : s €
S1}. Since the groups G; are adjoint, we find that conjugation gives a faithful action of G;(IF;) on S; = Sj.
So we may identify G;(IF,) with a subgroup of Aut(S7).

Take any (g1,82) € M;. Since M; N S is a normal subgroup of M;, we have glsgfl = gzsggl for all
s € S; = Sy. Therefore, g1 and gy are equal elements of Aut(S;). Therefore, M; is a subgroup of {(g,g) :
¢ € G1(FF/)}. To prove the claim, there is no harm in increasing M; to be equal to {(g,¢) : ¢ € G1(F,)}; it
also does not contain S = 51 x Sp. We may thus assume that G; = Gp.

We have already observed that Hy € {{1} x 53,51 x {1},S1 x S3}. By symmetry, we may assume that
Hgis Sy x {1} or Sy x S. From our explicit description of M, the homomorphism M; NS — S/(S1 x {1})
is surjective. So we may assume that Hy = S; x {1}; note that the S; x S cosets can be broken up into
Sy x {1}-cosets. O

We finally assume that we are in the setting of Lemma 7.9. Take any coset «y of S; x {1} in G(FF;). We
have kg = aS; x {B} for some «, B € G;(FF;). Using our explicit description of M;, we have
C1Nxo C {(g,B) : § € G1(Fy) is conjugate to B in Gy (IFy) }.

Therefore, |C1 Nxo| < |G1(IFy)|/[Cp|, where Cy is the centralizer of B in G1(IF). If B is semisimple in G,
then it lies in a maximal torus (of rank r) and hence |Cg| >, ¢". If B is not semisimple, then it commutes
with a non-trivial unipotent element of G; (IF;) (whose order is a power of ¢). Therefore,

[C1Nxo| < |G1(IFe)[/[Cpl < |Gi ()| /€ < |11/,
where the last inequality uses that [G1(IFy) : S1] can be bounded in terms of r.
We deduce that |C; Nxo|/|Hg| = |C1 Nko|/|S1] < 1/£. This completes our proof of Proposition 7.6.
8. HILBERT IRREDUCIBILITY

Fix an abelian scheme A — U of relative dimension g > 1, where U is a non-empty open subscheme of
]PI”< with n > 1 and K a number field. Take any constant b4 as in Theorem 3.1. For each prime ¢ > by, we
have p, ,(711(U)) 2 Sa,¢(F,)". For a prime £ > b, and real x, define the set

Bg(x) = {M € U(K) : H(u) <ux, pAM(GalK) 2 SA,E(]FZ)/}'

In this section, we will prove the following.
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Theorem 8.1. For each prime £ > by and x > 2, we have
|Bg(x)| <4 (f + 1)3g(2g+1)/2 . x[K:Q](n+1/2) log x + (E + 1)(6n+15/2)g(2g+1).

Remark 8.2. In our application, we will use Theorem 8.1 when ¢ < c(logx)? for some positive constants ¢

and 1y depending only on A. For such £, we obtain a bound |By(x)| < 4 x[KQ(+1/2)(Jog x)" for a constant
/

v
8.1. A special version of Hilbert irreducibility. We now state a specialized version of Hilbert’s irreducibil-
ity theorem. To ease notation and make it suitable for future use, we keep it separate from our abelian
variety application.

Let K be a number field. Fix a non-empty open subvariety U of P} with n > 1 and a continuous
representation

o: 7T1(U) — G(]Fg),

where G is a linear algebraic group defined over IF, for which the neutral component G° is reductive. Let S
be the commutator subgroup of G°(IF,). Assume further that p satisfies p(7r1(U)) 2 S.

For each point u € U(K), we obtain a homomorphism p,: Galg — G(IF,) by specializing p at u; it is
uniquely defined up to conjugation by an element of G(IF;). Hilbert’s irreducibility theorem implies that
pu(Galg) 2 Sforallu € U(K) away from a set of density 0; Theorem 8.3 below gives a quantitative version.

We first define some quantities for which the implicit constant of our theorem depends on. Let U be
the open subscheme of ¢, that is the complement of the Zariski closure of Py — U in Pf, . The Ok-
scheme U/ has generic fiber U. Fix a finite set . of non-zero prime ideals of Ok such that p arises from a
homomorphism 7t1 (Up) — G(FF;), where O is the ring of .#)-integers in K and .7} is the set of non-zero
prime ideals p of Ok that lie in .7 or divide 4.

Leta: 711(U) — G(F;)/G°(F;) be the homomorphism obtained by composing p with the obvious quo-
tient map. Let F C K be the minimal extension of K for which a(7t; (Ur)) = a(m; (Ug)).

Let G be the quotient of G by the center of G°. The group (G24)° is an adjoint algebraic group over F,.
Denote the rank and dimension of (G4)° by r and d, respectively. Define the index m = [G(IF;) : G°(FF;)].

Theorem 8.3. Fix notation and assumptions as above and take any x > 2. There is a constant c, depending only on
rand m, such that if { > c, then

[{u € U(K) : H(u) < x, pu(Galg) 2 S}|
<<U,F,\=5”\,r,m (f + 1)3d/2 : X[K:Q](}H_l/z) logx + (E + 1)(6n+15/2)d'

8.2. Proof of Theorem 8.3. We assume that ¢ > ¢, where c is a constant that depends only on r and m; we
will allow ourselves to appropriately increase ¢ throughout the proof while maintaining the dependencies.

Let G be the quotient of G by the center of G° and let 7r: G — G2 be the quotient map. The morphism
7 gives rise to homomorphisms G(FF;) — G2 (F,) and S — 54, where $2¢ is the commutator subgroup of
(G*)° (). Let

02 (U) — G(F,),

be the representation obtained by composing p with 7.
Before proceeding, the following lemma gives an alternate description of S and S2¢ for all sufficiently
large /.

Lemma 8.4. Let G be a connected reductive group over IFy. Let H be the derived subgroup of G and let ¢: H** — H
be its simply connected cover. Then G(IF,)’ is perfect and equal to ¢(H®(IFy)) for all £ >>, 1, where r is the rank of
H.

Proof. Since H*C is simply connected, it is a product of simply connected and simple groups Hj, ..., Hy.
We know that each group H;(IF,) is perfect for £ > 1 (moreover, the quotient by its center is a non-abelian
simple group). In particular, we may assume that the group H(IF,) is perfect. Therefore, ¢(H*(IF;)) =
¢(H*(F;)") C H(FF;)'". The group ¢(H*(FF,)) is perfect since H*(IF,) is perfect.
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Let Y be the kernel of ¢; it is commutative since the isogeny ¢ is central. The degree of ¢, and hence
also the cardinality of Y(F;), can be bounded in terms of r. Galois cohomology gives an injective ho-
momorphism H(IF,)/@(H*(IF;)) — H'(Galg,, Y(IF,)) of groups, so H(IF;)/¢(H*(IF,)) is abelian and its
cardinality can be bounded in terms of r. In particular, we have ¢(H*(FF;)) D H(F,)'.

We thus have ¢(H*(F;)) = H(F;) since we have shown both inclusions and we have seen that
¢(H*(FF,)) is perfect. We clearly have H(FF,)" C G(IF,)’ so it suffices to show that G(F;)" C ¢(H(F;)) for
allé >, 1.

Let G(IF;) ™ be the (normal) subgroup of G(IF;) generated by its elements of order ¢. We have G(IF;)™ C
H(FFy) since G/H is a torus over [F; and hence has no [Fy-points of order ¢. We have already shown that
[H(Fy) : ¢(H*(F;))] < Cr, where C, is a constant depending only on r. By taking ¢ > C,, we find
that G(FF,)* C ¢(H*(F,)). The group G(F,;)/G(F,)" is abelian by [Pet16, Proposition 1.1] and hence
G(F,)" C G(F;)*. Therefore, G(F;)' C G(IFy)" C ¢(H(Fy)). O

Lemma 8.5. If £ >>, 1 and M is a subgroup of G(FF;), then S is a subgroup of M if and only if S is a subgroup
T(M).

Proof. Let H be the derived subgroup of G°; it has rank r Let ¢: H** — H be the simply connected cover
of H. Define ¢?d := mo ¢: H* — (G*)°; it is the simply connected cover of (G3)°. By assuming / is
sufficiently large in terms of 7, Lemma 8.4 implies that S = ¢(H*(F,)), $*4 = ¢?d(H*(F,)), and that S
and $29 are perfect. If M is a subgroup of G(IF;) containing S, then

n(M) 2 () = n(@(H*(E,))) = g™ (H(F,)) = 5*.

Now let M be a subgroup of G(IF,) that satisfies 77(M) 2 S2d. We need to show that M O S. We have
n~1((G3)°) C G°, so there is no harm in replacing M by the smaller group M N G°(F,). In particular,
we may assume that M C G°(F,). We have n(M’) = (M)’ D (S2d) = §2d. So after replacing M by
the smaller group M’, we may further assume that M C S. We thus have 71(M) = 524 since 7(S) = $24.
The homomorphism S = $24 is surjective and its kernel Z lies in the center of G(IF;) since 77 is a central
isogeny, so we have S = M - Z. Taking commutator subgroups, we find that S = S’ = (M - Z)' = M'. Since
M’ C M C S, we deduce that M = S. O

Take any u € U(K). Specializing p®d at u gives a representation p2d: Galg — G*4(IF;). Up to an
inner automorphism, p24 agrees with 7t o p,,. By suitably increasing the constant ¢, Lemma 8.5 implies that
pu(Galg) 2 S if and only p39(Galg) 2 S29. So to prove the theorem, we need to bound the cardinality of
the set

{u e U(K): H(u) < x, 024 (Galg) 2 524}.

We now show that the assumptions of Theorem 8.3 hold for 0 and relate its basic invariants to those of
p. Lemma 8.5 and the assumption p(7r;(U)) 2 S implies that p2d(7ry(U)) 2 4. By our assumption on p,
the representation p?? arises from the homomorphism 7ty (Up) — G(F,) & G*4(F,), where O is the ring
of .7;-integers in K. The quantities r and d associated to p and p?? are the same.

There is no harm in replacing G by the algebraic subgroup generated by G° and p(7;(U)). In par-
ticular, we may assume that G is generated by G° and G(IF;). From this we find that the natural map
G(F;)/G°(F;) — G*(F,)/(G*)°(F,) is an isomorphism. Therefore, a, F and m are the same for p and
pad.

It is now clear that proving Theorem 8.3 for p* will give the desired bound for p.

Without loss of generality, we may now assume that the group G° is adjoint. Define the subgroups
H:=p(m(U)), Hg:=p(m(Ug)) and Hy:=HNG"(F)

of G(IF;). Let M be the set of subgroups M of H for which M 2 S and for which the quotient maps
M — H/Hg and M — H/Hy are surjective.

Lemma 8.6. Take any x > 2. There is a constant c, depending only on r and m, such that if £ > c, then

{u € U(K) : pu(Galk) € M}| i zppm (£+1)%/2 KA D 10g x4 (04 1) (1157204,
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Proof. Let L be the minimal extension of K in K for which Hy is the image of 711 (U ) under p. We have a
natural short exact sequence

1— Hg — H % Gal(L/K) — 1.

Observe that F is the subfield of L that satisfies ¢ (Gal(L/F)) = p(m;1(Ur)) = Hy - Hg.

Fix x > 2. Let M be the set of maximal elements of M with respect to inclusion. Take any group M € M
and define the subset C := ey hMh~! of H. By appropriately increasing the constant ¢, Proposition 7.1
says that there is a constant 0 < § < 1, depending only on r and m, such that |C N«|/ |Hg| < ¢ holds for
every coset k of Hg in Hy - Hg. By Theorem 6.1, we have

[{u € U(K) : H(u) < x, pu(Galg) C C}| <ypo x" /2 logx + |7 #1444 |CP" 2 | Hy 4,
Since || < ||+ [K : Q] and ¢ depends only on r and m, we deduce that
uc : u) < x, 0o, (Galg) is conjugate in H to a subgroup o
UK):H pu(Galg) i jugate in H bgroup of M
KU Erm x(n+1/2)[K:Q] IOgX + |y|4n+4 + |G(]Fg>|6n+6.
By summing over all M € M and using that the implicit constant depends on m, we have
[{ € UK) : pu(Galk) € MY <y [M]- (121 N0g x4 |7 7% 4G () I77°).

We now bound |M|. Take any M € M and define the subgroup H := M - S of G(IF;). Observe that M is
a maximal subgroup of H (if not, then it would give rise to a larger group in the set M). By [LPS07], the
group H has at most O(| H|>/?) maximal subgroups, where the constant is absolute. Therefore,

M| < |G [¥?-|{H:H subgroup of G(IF;) containing S}|.

We obtain | M| <, |G(IF,)[>/2 < m - |G°(F,)|?/2 by using that the order of the quotient group G(IF;)/S
can be bounded in terms of r and m. Therefore,

[{u € U(K) : pu(Galk) € M} < prm [G°(Fp) > (xlnH /2K log x 4 |7 |*1H4 4 G2 ()| ).
The bound in the lemma follows by noting that |G°(F,)| < (£ +1)%, cf. [Nor87, Lemma 3.5]. O

Let B: my(U) — H/Hy be the surjective representation obtained by composing p with the obvious quo-
tient map. As usual, we have a specialization B, : Galy — H/H)y for each u € U(k).

Lemma 8.7. We have
[{u € U(K) : H(u) < x, Bu(Galy) # H/Ho}| <y porm xVTD Iogx + o711,

Proof. To ease notation, define Y := H/Hy = B(mr1(U)) and its normal subgroup Y, := B(m(Ug)). The
field F is the smallest extension of K in K for which (711 (Ur)) = Y,. The homomorphism  arises from a
continuous homomorphism 711 (Up) — Y, where O is the ring of .#)-integers (since p arises from a repre-
sentation of 711 (Up)). By Corollary 6.2, we have

[{u € U(K) : H(u) < x, Bu(Galg) # Y}| <y py x0T/ 2 logx 4 |7 [#1H4,
The lemma follows by noting that || < |.| + [K: Q] and |Y| < m. O

Take any u € U(K) for which S is not a subgroup of p,(Galk). The natural map p, (Galx) — H/Hjg is
always surjective. If B, (Galx) = H/Hj (equivalently, if the natural map p,(Galx) — H/H) is surjective),
then we must have p, (Galg) € M. Therefore, [{u € U(K) : H(u) < x, p,(Galg) 2 S}| is less than or equal
to

[{u € U(K) : Bu(Galg) # H/Hp}| + [{u € U(K) : pu(Galg) € M}|.

The theorem is now a direct consequence of Lemmas 8.6 and 8.7.
25



8.3. Proof of Theorem 8.1. Take any prime ¢ > by. Corollary 6.2 with our assumption p 4 ,(711(U)) 2
Sa4(Fy) implies that |By(x)| < 4, x!KQ1+1/2) 1og x, where the implicit constant depends on £. So during
our proof we may exclude a finite number of primes /.

Define the linear algebraic group G := (G4 ), over F;. By Theorem 3.1(i), G° = (G, ,)F, is reductive
with derived subgroup (Sa,)F,. The rank of G° is bounded in terms of g since it is isomorphic to an
algebraic subgroup of GLyg s, -

Let S be the commutator subgroup of G°(IFy). By first excluding a finite number of primes, Lemma 8.4
implies that S = G°(IF;)’ equals S4 ((IF;)’. We have a representation

p:=py o m(U) — G(Fy).

For each u € U(K), specializing p at u gives a representation p,: Galx — G(IFy) that is uniquely defined
up to an inner automorphism of G(IFy) and agrees with o4 ,. In particular, we have

By(x) ={u € U(K) : H(u) < x, pu(Galg) 2 S}.
We are thus in the setting of §8.1 and hence we can define U/, 7, d, m and F as in that section.

Lemma 8.8. There is a finite set . of non-zero prime ideals of O, not depending on £, such that p 4 , arises from a

homomorphism 7r1(Up) — G(IF,), where .7 is the set of prime ideals of O that lies in . or divides ¢ and O is the
ring of .7 -integers in K.

Proof. We first “spread out” A. There is an abelian scheme A’ — Uy, where O’ is the ring of .-integers
in K for some finite set . of nonzero prime ideals of Ok such that the fiber over (Up)x = U is the abelian
scheme A — U.

Let O be the ring of .#j-integers in K, where .7} is the set of prime ideals of Ok that lie in . or divide
¢. Let A be the abelian scheme over Uy obtained from A’ by base change. The ¢-torsion subscheme A[/]
of A can be viewed as locally constant sheaf of Z/¢Z-modules on Uy that is free of rank 2g. The fiber of
All] over U = (Up)k is A[{]. Since p = p, , is the representation associated to A[/], we find that p arises
via base change from a representation of 1 (Up). O

Let .7 be a set of prime ideals as in Lemma 8.8. We may assume that .# is chosen so that |.#| is minimal
and hence || <4 1.

Lemma 8.9. As the prime { > b 4 varies, there are only finitely many possibilities for F, v and m.

Proof. Let a: 1 (U) — G(F;)/G°(F;) be the homomorphism obtained by composing p with the obvious
quotient map. The field F C K is the minimal extension of K for which a(7 (Ur)) = a(m; (Ug)).

Using that G 4 ¢ is the Zariski closure of a subset of G4 ¢(Z;), we find that the natural map G4 ((Z,)/ G5 ,(Z;) —
Ga,(Qr)/GS ,(Qy) is an isomorphism. Using Hensel’s lemma, we find that the reduction module £ homo-
morphism G A/,g (Z0)/G5 o(Zy) — G(Fy)/G°(IF,) is surjective. Therefore, « can be obtained by composing
the homomorphism 'yA,é of §2.2 with a surjective homomorphism G4 ((Q)/ G ,(Q;) — G(F;)/G°(FF).

In particular, m is at most [G4,¢(Qy) : G} ,(Q;)] which is independent of £ by Lemma 2.4(i). The field F is
contained in the minimal extension F’ C K of K for which 4 s (701 (Up:)) = v a,¢(711(Ug)). By Lemma 2.4(i),
F’ is independent of ¢ and hence there are only finitely many possibilities for F. We can bound r in terms of
the rank of G° which we have already noted can be bounded in terms of g. O

Take any x > 2. After first excluding a finite number of primes ¢, Theorem 8.3 implies that
[Be(x)| = [{u € U(K) : H(u) < x, pu(Galk) 2 S}
<up)slam L+ 1)34/2 . 4 [KQIm+1/2) 160y 4 (¢ 4 1)(6n+15/2)d,
By Lemma 8.9 and |.| <4 1, we have
IBo(x)| <a (£+1)3472. x[KQ+1/2) o0 3 4 (¢ 4 1)(6n+15/2)d

It remains to bound d. By choosing a polarization of A and combining with the Weil pairing on the
{-torsion of A, we find that G is isomorphic to an algebraic subgroup of GSngJFg by taking ¢ sufficiently
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large. Since d is equal to the dimension of the derived subgroup of G° it is at most dim SPagF, = g(2g+1)

and hence
|Bo(x)| <4 (£+ 1)3g(2g+1)/2 . [KQ](n+1/2) log x + (£ + 1)(6n+15/2)g(2g+1)_

9. PROOF OF THEOREM 1.1

Take any constant b4 as in Theorem 3.1 and define the set
B:={uc U(K):p,, ,(Galg) 2 Sa(F) for some prime £ > ba}.
To prove the theorem, it suffices by Proposition 5.1 to show that B has density 0.

Take any real number x > 2. We now define some finite sets that we will use to study B. Let r be the
common rank of the groups G, ,, cf. Proposition 2.5(ii). Fixa b > 0 for which Ok has a prime ideal of norm
at most blog2.

e Let B(x) be the set of u € B for which H(u) < x.
For a prime /, let By(x) be the set of u € U(K) with H(u) < x satisfying p4 ,(Galk) 2 Sa,¢(FF)".
Let R(x) be the set of u € U(K) with H(u) < x such that G4, ; # G4 ¢ for some prime /.
Let T(x) be the set of u € U(K) with H(u) < x such that for any non-zero prime ideal p of Ok sat-
isfying N(p) < b log x, the abelian variety A, has bad reduction at p or the roots of the polynomial
Py, in C* generate a group that is not isomorphic to Z.

Lemma 9.1. Take any u € U(K) with H(u) < x satisfying u ¢ R(x) U T(x). There are positive constants vy and
¢, with vy depending only on g and c depending only on K and g, such that if £ > c¢(max{[K : Q|,h(Ay),logx})7,
then IEA“,E (Galg) 2 SA,E (]Fg)/,

Proof. Since u ¢ T(x), there is a non-zero prime ideal q of Ok satisfying N(q) < b logx for which A, has
good reduction at q and for which the subgroup ® 4, 4 of C* generated by the roots of Py, 4 is isomorphic
to Z". This uses our choice of b and x > 2. By Theorem 3.3 and Theorem 3.1(ii), we have p Au,é(GalK) D
Sa,0(IFy) for all primes

9.1) ¢>c-max({[K: Q] h(A,),N(q)})7,

where ¢ and 7 are positive constants that depend only on g. Since u ¢ R(x), we have G4, = G4 y. In
particular, we have G4, = Gay and Sy, 0 = Say. Therefore, we have p, ,(Galk) 2 SA (IFy) for all
primes ¢ satisfying (9.1). Finally, since N(q ) < blog x, we can replace N(q) by b log x in (9.1) and adjust the
constant ¢ to obtain the lemma. O

We now bound the Faltings height /1(A,) in terms of H(u).
Lemma 9.2. We have max{1,h(A,)} <4 logH(u)+ 1 forall u € U(K).

Proof. We recall some results of Faltings [Fal86]. Let A be the coarse moduli space of the moduli stack ¢
of principally polarized abelian varieties of relative dimension g; it is a variety defined over Q. There is an
integer r > 0 for which (w4 /2 )®" defines a very ample line bundle on Ay, where A — 2, is the universal
abelian variety. Using this hne bundle, we will identify A; with a subvariety of a projective space P(). Let
A¢ be the Zariski closure of Ag in P’ and let M be the induced line bundle O(1) on Ag. In [Fa186 §3],
Faltings defines a hermitian metric [I- || on the line bundle induced by M on (Ag)c; it gives rise to a height
function /: Ag(K) — R. Choose any hermitian metric |-||; on the line bundle induced by M on (Ag)c; it
gives rise to a height function h1 : Ag(K) — R. For our implicit constants below, we note that the choices of
r, M and |-||; depend only on g.

Faltings observes that the metric || has logarithmic singularities along A, — Ag, cf. [Fal86, p. 15]. This
implies that

|h(x) —hi(x)| <gloghy(x) +1
forallx € Ag(K) ; see the proof of [Fal86, Lemma 3] or [Sil86, Proposition 8.2]. Therefore, we have
max{1,h(x)} <¢max{1,hi(x)} <¢logH(x)+1
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for all x € A¢(K), where H is the usual absolute height on P (K).

Consider a semistable abelian variety A defined over K that has a principal polarization ¢ (the connected
Néron model of A is a scheme over the ring of integers of K that is semiabelian). Denote by x € A¢(K) the
point on the moduli space corresponding to the pair (4, ¢). Then we have

h(A) =r-h(x) + Og(1);
this is noted in the proof of [Fal86, Theorem 1]. Combining the bounds above, we have
max{1,h(A)} <¢log H(x) +1;

note that this remains true without the semistable hypothesis since both sides are stable under replacing K
by a finite extension.

We finally consider our abelian scheme A — U. First suppose that A — U has a principal polarization
g. There is thus a morphism ¢: U — (Ag)k such that the pair (A, ,) represents the point ¢(u) € Ag(K)
for each u € U(K), where §, is the specialization of ¢ at u. So from above, we find that

max{1,h(Ay)} < log H(e(u)) + 1.
The lemma now follows since log H(¢(u)) <, log H(u) + 1 for all u € U(K), where the implicit constant
depends only on the morphism ¢: U — (A¢)x € PY, cf. [Ser97, §2.6].

It remains to consider a general A — U that need not have a principal polarization. Define the abelian
scheme B := (A x AV)* — U, where A" is the dual of A. Using Zarhin’s trick [FWG*92, Ch. IV Propo-
sition 3.8], one finds that the abelian scheme B — U is principally polarized. So by the case of the lemma
already proved, we have max{1,h(B,)} <4 logH(u)+1 for all u € U(K). The lemma follows since
h(By) = 8h(A,) for all u € U(K), cf. the remarks after Propositions 3.7 and 3.8 in Ch. IV of [FWG'92]
(recall we are using the stable Faltings height). a

Take x > 2. Take any u € U(K) satisfying H(u) < x and u ¢ R(x) U T(x). We have max{1,h(A,)} <4
log x by Lemma 9.2. So by Lemma 9.1, there are positive constants cand y such thatp 4 ,(Galg) 2 Sa ¢ (IF)’
holds for all ¢ > c¢(log x)7, where v depends only on g and ¢ depends only on A. Therefore,

B(x) CR(x)UT(x)U U By(x).

ba<t<c(logx)Y
In particular, we have
©2) B < [R@[+[Tx)[+  } [Be(x)l.
ba<(<c(logx)Y

We now bound the terms on the right hand side of (9.2).

9.1. Bounding the sum of the |By(x)|. Take c and v as in (9.2). For each prime by < ¢ < c(logx)?,
Theorem 8.1 implies that |By(x)| <4 xKQ(+1/2) (1o x)7', where 9/ is a positive constant depending only
on . Therefore,

©3) T IBilx)] a xR (1og 1)1+ = ol

ba<t<c(logx)"

9.2. Bounding |R(x)|. Let R be the set of u € U(K) such that G4, ¢ # G/ for some . Note that R(x) is
the set of u € R with H(u) < x. The set R has density 0 by Proposition 2.3 and hence

(9.4) IR(x)| = o(xKQn+1)y,

9.3. Bounding |T(x)|. We fix a prime ¢ > b4. Let U be the open subscheme of P, that is the complement
of the Zariski closure of Py — U in P{, . There is an abelian scheme A — Uy, where O is the ring of .7-
integers in K for some finite set . of nonzero prime ideals of Ok, such that the fiber over (Up)x = U is
our abelian scheme A — U. By increasing ., we may further assume that it contains all prime ideals that
divide ¢ - (G4 ¢(Z/¢Z)| and that U (IF},) is non-empty for all p ¢ .. There is no harm in replacing U by a
non-empty open subvariety since this only removes a density 0 set of rational points. So after replacing U
and increasing ./, we may further assume that U, is affine and geometrically irreducible for all non-zero
prime ideals p ¢ . of Ok.
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For each integer ¢ > 1, the ¢°-torsion subscheme A[¢¢] of A can be viewed as locally constant sheaf of
Z/t*Z-modules on U that is free of rank 2g. The fiber of A[¢°] over U = (U )k is A[¢?]. Since p 4 ;. is the
representation associated to A[¢°], we find that it arises via base change from a representation of 7ty (/).
Combining these representations together appropriately, we obtain a representation ¢ 4, of 71 (i) such
that base change gives rise to our representation p4: 711 (U) = 711(Uk) — GLy,(4)(Qy). Since 4, and
pa,¢ have the same image, we have 0 4 ¢: 1 (U) = Ga(Zy).

For a non-zero prime ideal p ¢ . of Ok and a point u € U(IF, ), let A, be the abelian variety over [F,, that
is the fiber of A over u. Since p { £, we have Py, (x) = det(xI — ¢ 4,¢(Frob,)), where P4, (x) is the Frobenius
polynomial of A,. Let ® 4, be the subgroup of C* generated by the roots of the Frobenius polynomial
Py, (x).

Lemma 9.3. There is a closed subvariety Y C G3, ,, stable under conjugation by G 4, such that if ¢ 4,¢(Frob,) €
a.0(Qe) —Y(Qq) for a prime ideal p & 7 of Ok and a point u € U(Fy), then @ 4, = Z.

Proof. This essentially follows from Theorem 1.2 [LP97]; we give a few extra details since this theorem was
only stated for representations of Galg.

Take any prime ideal p ¢ . and u € U(IFp). Let H, ¢ be the Zariski closure of the subgroup of G4,
generated by 04 ¢(Frob,). The proof of Lemma 1.3(b) of [LP97] shows that there are only finitely many
possibilities for (Hy,¢)g, up to conjugation by GLy, (4 (Qy) as we vary over all p and u; note that the proof
only uses that 04 ¢(Frob,) is semisimple along with information about the valuations of the roots of P4, (x).
The end of the proof of Theorem 1.2 [LP97] then shows how to construct a closed subvariety Y C G , stable
under conjugation by G ¢, such that if ¢ 4 ¢(Froby) € G} ,(Q/) — Y(Qy) for a prime ideal p ¢ .7 of Ok and
apoint u € U(F,), then H,, ¢ is a maximal torus of G -

Now suppose that T := H,, ; is a maximal torus of G ,; it remains to show that ® 4, = Z'. Let X(T) be
the group of characters Ty, — G,, 5, ; itis a free abelian gfoup whose rank is equal todim T = rankG} , = .
Define the homomorphism ¢: X(T) — C*, a — 1(a(04(Froby))), where ¢ is any embedding of Q, into
C. The homomorphism ¢ is injective since otherwise H, ; # T. Since ¢4 ¢(Frob,) is semisimple with
characteristic polynomial P4, (x), we find that the image of ¢ is generated by the roots of P4, (x). Therefore,
we have isomorphisms ® 4 = X(T) = Z'. O

For each non-zero prime ideal p ¢ .7 of Ok, let D, be the set of u € P"(IF,) for which u ¢ U(FF,) or for
which ® 4, % Z'. Define 6, := |Dy|/|P"(FFp)|.

Lemma 9.4. There is a constant 0 < & < 1 such that 6, < 6 holds for infinitely many prime ideals p ¢ . of Ok.
Proof. Fix an integer e > 1. Take Y as in Lemma 9.3 and define ) = Y(Q) NG ¢(Zy); it is stable under
conjugation by G4 ((Z). Let Y, be the image of Y in G ((Z/(°Z). Let @ g e: m1(U) — Ga(Z/l°Z) be
the representation obtained by composing ¢ 4 ¢ with the reduction map G4 ((Zy) — Ga (Z/(°Z).

Define the finite group G := 04 ;e (711 (U)) = Py e (m1(U)) C Ga(Z/°Z). Define Gy := 0 4 e (m1(Uo)g)) =
P4, (711(Ug)); it is a normal subgroup of G. After possibly increasing the finite set ., we may assume that

Qe (1 (Ug,)) = Gg
holds for all non-zero prime ideals p ¢ . of Ok, see Lemma 6.5.

Take a non-zero prime ideal p ¢ . of Ok. From @ 4 ., base change to IF, gives a homomorphism we will
denote by ¢p: 1 (UF,) — G; uniquely defined up to conjugation by G and satisfying oy (71 (L{R)) = Gg.
Let x;, be the unique Gg-coset of G that contains gy, (Froby,) for all u € U(IF,). Note that the set J, N xy, is
stable under conjugation by G.

If op (Froby) € xp — (Ve Nkp) for a point u € U(IFy), then ¢ 4 ¢(Frob,) ¢ Y(Q,) and hence ® 4, = Z’ by
Lemma 9.3. Therefore,

{u € U(IFy) : gp(Froby) € 1y — (Ve Nicp) } € P*(IFy) — D.
By Theorem 6.3, this implies that
Ve N K -
(1= ) ey ) 4+ 0 (NG 12) < P8y~ Dy
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Dividing by |IP"(F,)| and using that [IP" (IF,) — U (FF,)| <4 N(p)"~1/2, we deduce that
| Ve Ny
|Ggl

Now suppose that J, N G is a proper subset of G. Then there is a Gg-coset ko of G such that V., N«
is a proper subset of xo. Let C be the conjugacy class of G/Gg that contains the image of xo. Define the
homomorphism

9.5) 5p < +O040(N(p)1/2).

w: mU) 5 G - G/Gg.

The homomorphism « factors through Galg; moreover, for u € U(IF,) with p ¢ .7, the conjugacy class of
a(Froby ) is represented by the image of x, in G/ G,. By the Chebotarev density theorem, there are infinitely
many p ¢ & for which the image of x, in G/ Gy lies in C; now take any such p. The cosets k, and xq are
conjugate in G. Since ), N G is stable under conjugation by G, we have

|yem7<p| _ D}emKO|
[e |Gg|

<1

where the inequality uses our choice of «y. In particular, |V, Nxp|/|Gg| < 1 —1/|Ggl|. After first excluding
a finite number of p, we deduce that d, < 1 by (9.5).

So to prove the lemma, it suffices to show that J, N G is a proper subset of G. Since Y € G}, , the variety
Y has dimension at most d — 1, where d := dimGj ;. So ) is a p-adic analytic manifold of dimension

at most d — 1 and hence |).| <y ged=1) of, [Ser81, Theéoreme 8]. Since ¢ > by, G4 is smooth and
(Ga(Zy) : pae(m(U))] <4 1by Theorem 3.1(i) and (iii). Therefore, [Ga (Z/l°Z) : Py pe(m1(U))] <4 1
and hence |G| >4 |G ((Z/¢°Z)| > 4 ¢°**. We have not imposed any conditions on the integer ¢ > 1 yet.
So using |G| >4 £ and |V,| <y ¢(4~1), we choose e > 1 large enough so that |G| > || and hence
Ye N G is a proper subset of G. O

By Lemma 9.4, there are infinitely many non-zero prime ideals py, p2, ... of Ok that are not in . and
satisfy d,, < & for some 0 < 6 < 1. Take any integer m > 1.

Let D be the set of u € P"(K) for which the image in IP"(IF,,) under the reduction modulo p; lies in
Dy, forall1 < i < m. The subset D of ]P"(K) has density H;»”:l Op;- Note that if the reduction # of a point
u € U(K) modulo p; lies in P"(IF,,) — Dy, then A, = A, has good reduction at p; and @4, , = Py, = 2Z".
Therefore, we have T(x) C D for all sufficiently large x. Since D has density [T/, J,,, we deduce that

. T (x)]
lim su Op. < O™
S e i) G <] <110

Since 0 < § < 1and since m > 1 was arbitrary, this implies thatlimy, yo |T(x)|/|[{u € P*"(K) : H(u) < x}| =
0. Equivalently, we have

9.6) IT(x)| = o(xI Q).
9.4. End of the proof. Using (9.2) with (9.3), (9.4) and (9.6), we deduce that |B(x)| = o(x[KQ"+1)) and
hence B has density 0. As already noted, the theorem now follows directly from Proposition 5.1.
10. PROOF OF THEOREM 1.2

After replacing X by a non-empty open subvariety, and restricting A, we may assume that there is an
étale morphism ¢: X — U, where U is a non-empty open subvariety of P} and 7 is the dimension of X.

We first consider the special case where ¢: X — U is a Galois cover. Denote the degree of ¢ by d. Define

B := ReSX/u(A),

i.e., the Weil restriction of A along the morphism ¢; it is an abelian scheme of relative dimension g - d over
U. Note that for any U-scheme S, we have B(S) = A(S xy X).
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Using ¢, we can identify 771 (X) with a normal subgroup of 711 (U). Let G be the Galois group of ¢, i.e.,
the group of automorphisms ¢ of X such that ¢ o ¢ = ¢. For each o € G, let A” be the abelian scheme over
X obtained by composing A — X with ¢~1. Using that ¢ is a Galois cover, we have a natural isomorphism
(10.1) BxyX=]] A"

ceG
of abelian schemes over X and hence an isomorphism pg| -, (x) = I1rec par of representations of 7y (X).
For any number field L/K and point x € X(L), taking the fiber of (10.1) above x gives a natural isomor-

phism
0 =[] 4o
ceG
of abelian varieties over L; the fiber of A” over x is A,(,). Therefore, we have an equality OB, =

[oecpa,,, of representations of Galy. By considering specializations, we find that

los(m1(X)) : p,y,, (Galu)] = [(TT pa.)( (T g, ) (Galn)]
ceG ceG
Therefore, [04 (71 (X)) : pa,(GalL)] < [pp(m1(X)) : B, (GalL)] < [op(m1(U)) : pB,,, (GalL)].
By Theorem 1.1, there is a constant C such that [pg(7r1(U)) : pp,(Galk)] < C holds for infinitely many
u € U(K). Take any such u € U(K). There is a field L/K with [L : K] < d and a point x € X(L) such that
¢(x) = u. Therefore,

[oa(m1(X)) = pa,(GalL)] < [op(m1(U)) : pp,, (Galp)] < [pp(m1(U)) < pp, (Galk)] - [L : K] < C-d.

This proves that [p4(711(X)) @ pa,(Galyy))] < C-dand [k(%) : K] < d, where ¥ is the closed point of X
corresponding to x (one can identify ¥ with the Galg-orbit of x in X(K)). There are infinitely many such
closed points ¥ since we have infinitely many u € U(K) for which [pg(7r1(U)) : pp,(Galk)] < C. This
completes the proof in the case where ¢ is a Galois cover.

We now consider the general case. There is an étale morphism : X’ — X such that its composition
with ¢ gives a Galois cover ¢': X’ — U. To prove Theorem 1.2 there is no harm in replacing K by a finite
extension K’ and A by its base change over Xy:. So without loss of generality, we may assume that X’ is a
geometrically irreducible variety defined over K.

Let A" — X’ be the base change of A by ; it is an abelian scheme over X'. Since ¢’ is Galois, the case of
Theorem 1.2 already proved shows that there are integers d and C such that [p /(711 (X')) : p A, (Galy(y)] <

C holds for infinitely many closed points x’ of X’ satisfying [k(x") : K] < d. Take any such closed point x’
of X’ and define the closed point x = ¢(x’) of X. Using ¢, we can view k(x’) as an extension of k(x) of
degree at most deg ¢. In particular, [k(x) : K] < [k(x’) : K] < d. We have an isomorphism A between A’,
as abelian varieties over k(x’). Therefore, we have

loa(m (X)) = pa, (Galy())] = [oa (m1 (X)) : pur, (Galg(er))]-
and hence

[oa(m1(X)) : pa, (Galyy)] < [oa(m1(X")) : pa, (Galg(y))] - deg
= [oa(m (X)) : par, (Gal(y))] - deg yp
< C-degy.
Therefore, [k(x) : k] < dand [p(m1(X)) : pa,(Galyy))] < C-degy. Finally, there are infinitely many such
closed points x of X since they arose from infinitely many closed points x’ of X'.
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