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ABSTRACT. Associated to an abelian variety A of dimension g over a number field K is a Galois representation
ρA : Gal(K/K) → GL2g(Ẑ). The representation ρA encodes the Galois action on the torsion points of A and its
image is an interesting invariant of A that contains a lot of arithmetic information. We consider abelian varieties
over K parametrized by the K-points of a nonempty open subvariety U ⊆ Pn

K . We show that away from a set of
density 0, the image of ρA will be very large; more precisely, it will have uniformly bounded index in a group
obtained from the family of abelian varieties. This generalizes earlier results which assumed that the family of
abelian varieties have “big monodromy”. We also give a version for a family of abelian varieties with a more
general base.

1. INTRODUCTION

Fix an abelian scheme π : A → U of relative dimension g ≥ 1, where U is a non-empty open subvariety
of Pn

K with K a number field and n ≥ 1. Choose an algebraic closure K of K and define the absolute Galois
group GalK := Gal(K/K).

Take any point u ∈ U(K). The fiber of π over u is an abelian variety Au over K of dimension g. For each
positive integer m, let Au[m] be the m-torsion subgroup of A(K). The group Au[m] is a free Z/mZ-module
of rank m and has a natural GalK-action. This Galois action can expressed in terms of a representation

ρA,m : GalK → AutZ/mZ(A[m]).

Taking the inverse limit over all m, ordered by divisibility, we obtain a single representation

ρAu : GalK → Aut(lim←− Au[m]) ∼= GL2g(Ẑ)

that encodes the Galois action on the torsion of Au, where Ẑ is the profinite completion of Z. We are inter-
ested in describing how large the image of ρAu can be as we vary the point u ∈ U(K).

We first observe that the abelian scheme A imposes a constraint on the image of ρAu . Let π1(U, η) be
the étale fundamental group of U, where η is a fixed geometric generic point of U. For each positive
integer m, let A[m] be the m-torsion subscheme of A. The morphism A[m] → U can be viewed as locally
constant sheaf of Z/mZ-modules on U that is free of rank 2g; it thus corresponds to a representation
ρA,m : π1(U, η)→ AutZ/mZ(A[m]η), where the group A[m]η is the fiber of A[m] above η. Taking the inverse
limit over all m, ordered by divisibility, we obtain a single representation

ρA : π1(U, η)→ Aut(lim←− A[m]η) ∼= GL2g(Ẑ).

Specialization at a point u ∈ U(K) induces a homomorphism u∗ : GalK → π1(U, η), uniquely defined up
to conjugacy. Composing u∗ with ρA, we obtain a representation GalK → GL2g(Ẑ) that agrees with ρAu

up to an inner automorphism of GL2g(Ẑ). So we may identity ρAu with the specialization of ρA at u. In
particular, we can view ρAu(GalK) as a subgroup of ρA(π1(U, η)) that is uniquely defined up to conjugation.
Suppressing the base point, we have

ρAu(GalK) ⊆ ρA(π1(U))

for all u ∈ U(K). Our main result is that the index [ρA(π1(U)) : ρAu(GalK)] is finite and bounded as we vary
over “most” u ∈ U(K). Our notion of “most” will be that of density. Let H be the absolute multiplicative
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height function on Pn(K). The density of a set B ⊆ Pn(K) is the value

lim
x→+∞

|{u ∈ B : H(u) ≤ x}|
|{u ∈ Pn(K) : H(u) ≤ x}|

if the limit exists. For example, U(K) has density 1. Our main theorem is the following:

Theorem 1.1. Fix an abelian scheme π : A → U of positive relative dimension, where U is non-empty open subva-
riety of Pn

K for a number field K and n ≥ 1. Then there is a constant C such that[
ρA(π1(U)) : ρAu(GalK)

]
≤ C

holds for all u ∈ U(K) in a set of density 1.

Theorem 1.1 shows that, up to bounded index, the image of the specializations are usually as large
as possible when the geometric constraints are taken into account. This can thus be viewed as a variant
of Hilbert’s irreducibility theorem (and effective versions of Hilbert’s irreducibility theorem will be a key
component of our proof). This is useful since in practice, ρA(π1(U)) is easier to compute that the images
of the representations ρAu (one reason is that there are geometric and topological approaches to computing
the normal subgroup ρA(π1(UK))).

However, note that our theorem is not a formal consequence of Hilbert’s irreducibility theorem since
ρA(π1(U)) is not finitely generated when viewed as a topological group with the profinite topology. More-
over, the constant C cannot alway be taken to be 1. As an example, take K = Q and consider any abelian
scheme A → U := A1

Q − {0, 1728} of relative dimension 1 such that each fiber Au is an elliptic curve with
j-invariant u. In this case, we have ρA(π1(U)) = GL2(Ẑ). The theorem cannot hold with C = 1 since from
Serre we know that ρE(GalQ) 6= GL2(Ẑ) for all elliptic curves E over Q, cf. Proposition 22 of [Ser72]. For
this example, the theorem will hold with C = 2.

There are several special cases of Theorem 1.1 occurring in the literature and we will recall some in
§1.3. These earlier results have a strong constraint on the image of ρA; more precisely, they assume that
ρA(π1(U)) is an open subgroup of GSp2g(Ẑ). The main novelty of Theorem 1.1 is the lack of restrictions
on our abelian scheme A → U. Since we have less control on the image of ρA, the group theory involved
is much more complicated; for example, the `-adic monodromy groups need not be connected and their
derived subgroups need not be simply connected.

The constant C in Theorem 1.1 that occurs in our proof will be given in §1.2. We have not tried to
determine the optimal C.

1.1. General base. Fix a number field K. Let π : A → X be an abelian scheme of relative dimension g ≥ 1,
where X is a smooth and geometrically integral variety defined over K of dimension n ≥ 1. As before, we
can define a representation

ρA : π1(X)→ GL2g(Ẑ).

Take any closed point x of X. The residue field k(x) of x is a finite extension of K. The fiber of A over
x is an abelian variety Ax over k(x). Associated to Ax, we have a representation ρAx : Galk(x) → GL2g(Ẑ)

whose image we may again view as a subgroup of ρA(π1(X)). The following theorem says that there are
infinitely many closed points x of X of bounded degree such that ρAx (Galk(x)) is large.

Theorem 1.2. There are constants d and C such that there are infinitely many closed points x of X satisfying
[k(x) : K] ≤ d and [ρA(π1(X)) : ρAx (Galk(x))] ≤ C.

The theorem can fail if we insist that d = 1; for example, consider the case where X is a curve of genus at
least 2 and hence X(K) is finite.

We will deduce Theorem 1.2 from Theorem 1.1. The idea is to find, after possibly shrinking X, an étale
map X → U, where U is open in Pn

k . We then apply Theorem 1.1 to the restriction of scalars of A from X to
U.
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1.2. The constant C. We now give a brief description of the constant C from Theorem 1.1 that occurs in
our proof, see Remark 5.10. In particular, observe that the constant C can be computed directly from H :=
ρA(π1(U)) and its normal subgroup Hg := ρA(π1(UK)).

Take any prime ` and let p` : GL2g(Ẑ)→ GL2g(Z`) be the `-adic projection. Let G` be the Zariski closure
in GL2g,Q`

of p`(ρA(π1(U))); it is an algebraic group over Q` whose neutral component we denote by G◦` .
Let M be the kernel of the homomorphism

H
p`−→ G`(Q`)→ G`(Q`)/G◦` (Q`).

We will show later that M does not depend on the choice of `. The commutator subgroup M′ of M is normal
in H. We will see that the image of the quotient map

Hg → H/M′

is finite and its cardinality is our constant C.

Example 1.3. As a special case, consider when H = GSp2g(Ẑ) and Hg = Sp2g(Ẑ); these are the largest that

both H and Hg could possibly be, up to conjugation in GL2g(Ẑ), when the abelian scheme A is principally
polarized. We have M = H since G` = GSp2g,Q`

is connected. Therefore, C is the cardinality of the group

Sp2g(Ẑ)/ GSp2g(Ẑ)′. One can show that C = 1 if g ≥ 3 and C = 2 if g = 1 or 2.

1.3. Some earlier results. We now discuss special cases of Theorem 1.1 that have already been proved and
some related results. Note that some of the results use integral points instead of rational points. In the
results mentioned, the term most will refer to a suitable notion of density; the reader is encouraged to look
at the corresponding articles for the precise definitions.

We first discuss the fundamental case g = 1, i.e., A is an elliptic curve. For a non-CM elliptic curve
E/Q, Serre’s open image theorem says that ρE(GalQ) is an open subgroup of GL2(Ẑ), cf. [Ser72]. In particular,
ρE,`(GalK) = GL2(Z/`Z) for all primes ` ≥ cE, where cE is a constant depending on E. As a consequence
of Serre’s theorem, if A is non-isotrivial then ρA(π1(U)) is an open subgroup of GL2(Ẑ).

The following are all with respect to the family A → U := Spec Q[a, b, (4a3 + 27b2)−1] of elliptic curves
given by the Weierstrass equation y3 = x3 + ax + b. In this case, we have ρA(π1(U)) = GL2(Ẑ) and
ρA(π1(UQ

)) = SL2(Ẑ).
Duke [Duk97] proved that for “most” elliptic curves E/Q, we have ρE,`(GalK) = GL2(Z/`Z) for all

primes. Building on this, Jones [Jon10] showed that for “most” elliptic curves E/Q, ρE(GalQ) is an index 2
subgroup of GL2(Ẑ) (as already noted, ρE is never surjective for an elliptic curve over Q). Similar results
for one-parameter families of elliptic curves over Q can be found in [CGJ11].

For a number field K 6= Q, Zywina showed that for “most” elliptic curves E/K, we have ρE(GalK) =

{B ∈ GL2(Ẑ) : det(B) ∈ χcyc(GalK)}, where χcyc : GalQ → Ẑ× is the cyclotomic character. In partic-
ular, if K 6= Q contains no non-trivial abelian extension of Q, then there is an elliptic curve E/K with
ρE(GalK) = GL2(Ẑ). Greicius [Gre10] had previously constructed an explicit elliptic curve E over a num-
ber field with ρE surjective.

We now consider g ≥ 2 and assume further that A is principally polarized. After possibly conjugating
ρE by an element in GL2g(Ẑ) we may assume that ρA(π1(U)) is a subgroup of GSp2g(Ẑ). Under the “big

monodromy” assumption that ρA(π1(U)) is an open subgroup of GSp2g(Ẑ), Landesman, Swaminathan,
Tao and Xu proved Theorem 1.1 with an optimal C. Earlier, Wallace [Wal14] had proved a variant of this
with g = 2; also see Remark 1.3 in [LSTX19]. The case g = 1 had been proved in [Zyw10].

When K = Q, one can use the Kronecker–Weber theorem to show that ρAu(GalQ) ∩ GSp2g(Ẑ) agrees
with the commutator subgroup of ρAu(GalQ); this and the inclusion ρAu(GalK) ⊆ ρA(π1(U)) are the only
constraints on the image of ρAu for “most” u ∈ U(K). In the general setting of Theorem 1.1, there may be
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additional constraints on the image of all the representations ρAu .

In the setting of Theorem 1.1, define the set

S := {u ∈ U(K) : ρAu(GalK) is not an open subgroup of ρA(π1(U))}.
An immediate consequence of Theorem 1.1 is that the set S density 0. Moreover, Cadoret proved that the
set S is thin in U(K), cf. Theorem 1.2 and §1.1 of [Cad15]. Recall that every thin subset of U(K) has density
0, cf. §13.1 of [Ser97].

1.4. Overview. We now give a brief overview of the proof of Theorem 1.1.
For a rational prime `, let ρA,` : π1(U) → GL2g(Z`) be the representation obtained by composing ρA

with the natural projection GL2g(Ẑ) → GL2g(Z`). We define GA,` be the Z`-group subscheme of GL2g,Z`

obtained by taking the Zariski closure of ρA,`(π1(U)). These will agree with later definitions of ρA,` and
GA,` after choosing an appropriate Z`-basis for the `-adic Tate module T`(A). The generic fiber GA,` of
GA,` is an algebraic group over Q` that we call the `-adic monodromy groups of A. In §2, we recall several
properties of GA,`.

We have an easy inclusion ρA,`(π1(U)) ⊆ GA,`(F`). Theorem 3.1, which is a generalization of Serre’s
open image theorem, implies that

[GA,`(F`) : ρA,`(π1(U))] ≤ C

for a constant C that does not depend on `. There is a constant bA such that the neutral component of the
algebraic group (GA,`)F`

over F` is reductive for all ` ≥ bA. For ` ≥ bA, let H` is the derived subgroup
of the neutral component of the group (GA,`)F`

and let S` be the commutator subgroup of H`(F`) (in the
notation of §3, S` = SA,`(F`)

′).
After possibly increasing bA, we will observe that

S` ⊆ ρA,`(π1(U))

holds for all ` ≥ bA. In the special case of the examples in §1.3 where ρA(π1(U)) is an open subgroup of
GSp2g(Ẑ), we find that GA,` = GSp2g,Z`

and S` = Sp2g(F`) for all sufficiently large `.

Fix a prime ` ≥ bA and a point u ∈ U(K), specialization gives an inclusion ρAu ,`(GalK) ⊆ ρA,`(π1(U))

uniquely determined up to conjugation. Since S` is a normal subgroup of GA,`(F`), and hence also of
ρA,`(π1(U)), it makes sense to ask whether or not S` is a subgroup of ρAu ,`(GalK). Define the set

B := {u ∈ U(K) : ρAu ,`(GalK) 6⊇ S` for some prime ` ≥ bA}.

One of the main tasks of this paper is to show that B has density 0; equivalently, that for “most” u ∈ U(K),
we have ρA,`(GalK) ⊇ S` for all ` ≥ bA. In §5, we prove that if the set B has density 0, then Theorem 1.1
will hold. This will require some information about the groups ρA,`(π1(UK)) which we study in §4.

We will prove Theorem 1.1 in §9. Take any real number x ≥ 2. Let B(x) be the set of u ∈ B satisfying
H(u) ≤ x. To prove that B has density 0, we need to show that |B(x)| = o(x[K:Q](n+1)) as x → ∞. For each
` ≥ bA, let B`(x) be the set of u ∈ U(K) with H(u) ≤ x satisfying ρAu ,`(GalK) 6⊇ S`. Using an effective open
image theorem for abelian varieties, we will show that

B(x) ⊆ R(x) ∪ T(x) ∪
⋃

bA≤`≤c(log x)γ

B`(x).(1.1)

for some constant c, where the sets R(x) and T(x) are defined at the beginning of §9. The important aspect
of the inclusion (1.1) is that the right hand side involves only a bounded number of primes ` while the
definition of B requires considering all primes ` ≥ bA. In §9.2 and §9.3, we show that |R(x)| = o(x[K:Q](n+1))

and |T(x)| = o(x[K:Q](n+1)). So from (1.1), we have

|B(x)| ≤ ∑
bA≤`≤c(log x)γ

|B`(x)|+ o(x[K:Q](n+1)).(1.2)
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We thus need to find bounds for |B`(x)|. The Hilbert Irreducibility Theorem (HIT) implies that |B`(x)| =
o(x[K:Q](n+1)) as x → ∞. However, to use (1.2) to find meaningful bounds for |B(x)|, we need to find better
bounds for |B`(x)| with an explicit dependency on `.

In §6, we prove an effective version of HIT using the large sieve. In §8.1, we use it to give a more
specialized version of HIT that is relevant to our application. To obtain the explicit bounds we require,
we will need some group theoretic input which is discussed in §7. For each prime ` ≥ bA and x ≥ 2,
Theorem 8.1 says that

|B`(x)| = O
(
(`+ 1)3g(2g+1)/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)g(2g+1)

)
,

where the implicit constant depends only on A. Combining this with (1.2) gives |B(x)| = o(x[K:Q](n+1)) and
hence B has density 0.

Finally in §10, we prove Theorem 1.2 by reducing to Theorem 1.1.

1.5. Notation. Consider a topological group G. The commutator subgroup of G is the closed subgroup G′

generated by the set of commutators of G. We say that G is perfect if G′ = G. Profinite groups, and in
particular finite groups, will always be considered with their profinite topology.

For a scheme X over a commutative ring R and a commutative R-algebra S, we denote by XS the base
extension of X by Spec S. Let M be a free module of finite rank over a commutative ring R. Denote by
GLM the R-scheme such that GLM(S) = AutS(M⊗R S) for any commutative R-algebra S with the obvious
functoriality.

For an algebraic group G over a field F, we denote by G◦ the neutral component of G, i.e., the connected
component of the identity of G. Note that G◦ is an algebraic subgroup of G.

For two real quantities f and g, the expression f �α1,...,αn g means that the inequality | f | ≤ C|g| holds
for some positive constant C depending only on α1, . . . , αn. In particular, f � g means that the implicit
constant C is absolute. We denote by Oα1,...,αn(g) a quantity f satisfying f �α1,...,αn g. For two real valued
functions f and g of a real variable x, with g(x) non-zero for all sufficiently large x, the expression f = o(g)
means that f (x)/g(x)→ 0 as x → +∞.

For a number field K, we denote by OK the ring of integers of K. For a non-zero prime ideal p of OK,
we define its residue field Fp := OK/p. For a representation ρ : GalK → G unramified at a prime p, we
will view ρ(Frobp) as either a conjugacy class of G or as an element of G that is uniquely defined up to
conjugacy. Throughout, ` will always denote a rational prime.

When talking about prime ideals of a number field K, density will always refer to natural density. From
context, there should be no confusion with the notion of density of subsets of Pn(K).

1.6. Acknowledgements. Many thanks to David Zureick–Brown; this article was originally intended to be
part of a joint work with him. Many parts of the original project have been greatly expanded on by his REU
students in [LSTX19] and [LSTX17]. In particular, an examination of their papers will hopefully make up
for the lack of examples in this article.

2. `-ADIC MONODROMY GROUPS

Fix a number field K and an abelian scheme π : A → U of relative dimension g ≥ 1, where U is a
non-empty open subvariety of Pn

K for some integer n ≥ 0.
Note that by including the case n = 0, the following notation and definitions will also hold for an abelian

variety of dimension g ≥ 1 defined over the number field K (when n = 0, we have U = Pn
K = Spec K and

we can identify π1(U) with GalK).

We now extend our notation from the introduction. For an integer m ≥ 2, let Tm(A) be the inverse
limit of the groups A[me]η over all e ≥ 1, where the transition homomorphisms A[me+1]η → A[me]η are
multiplication by m. The group Tm(A) is a free Zm-module of rank 2g, where Zm := lim←−e

Z/meZ =

∏`|m Z`. The representations ρA,me combine to give a continuous representation

ρA,m : π1(U)→ AutZm(Tm(A)).
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Take any prime `. Define V`(A) := T`(A)⊗Z`
Q`; it is a Q`-vector space of dimension 2g. With notation

as in §1.5, we have an algebraic group GLV`(A) defined over Q`. We can view AutZ`
(T`(A)), and hence also

ρA,`(π1(U)), as a subgroup of AutQ`
(V`(A)) = GLV`(A)(Q`).

2.1. `-adic monodromy groups. For a prime `, we have ρA,`(π1(U)) ⊆ GLV`(A)(Q`). To study the image
of ρA,`, we will study a related algebraic group defined over Q`.

Definition 2.1. The `-adic monodromy group of A, which we denote by GA,`, is the Zariski closure of
ρA,`(π1(U)) in GLV`(A); it is an algebraic group defined over Q`.

For any m ≥ 2 and u ∈ U(K), we can view ρAu ,m(GalK) as a closed subgroup of ρA,m(π1(U)) that is
uniquely determined up to conjugation. With m = `, we can thus identify GAu ,` with a closed algebraic
subgroup of GA,` uniquely defined up to conjugation by an element in GA,`(Q`).

Lemma 2.2. Assume that n ≥ 1.
(i) For each integer m ≥ 2, we have ρAu ,m(GalK) = ρA,m(π1(U)) for all u ∈ U(K) away from a set of density

0.
(ii) For each prime `, we have GAu ,` = GA,` for all u ∈ U(K) away from a set of density 0.

Proof. Part (ii) is an easy consequence of (i) with m = `.
We now prove (i). Define H := ρA,m(π1(U)). Let Φ(H) be the Frattini subgroup of H, i.e., the intersection

of the maximal closed and proper subgroups of H. The kernel of H → AutZ/mZ(Tm(A)/mTm(A)) is an
open subgroup of H that is a product of finitely generated pro-` groups with `|m. From the proposition of
[Ser97, §10.5], we find that Φ(H) is an open, and hence finite index, subgroup of H.

So there is an integer e ≥ 1 such that ρAu ,m(GalK) = H if and only if ρAu ,me(GalK) = ρA,me(π1(U)). The
lemma follows since Hilbert’s irreducibility theorem implies that ρAu ,me(GalK) = ρA,me(π1(U)) holds for
all u ∈ U(K) away from a set of density 0. �

Note that a priori the implicit set of density 0 in Lemma 2.2(ii) depends on `. The following proposition,
which we prove in §2.3, removes this dependence on `.

Proposition 2.3. Assume that n ≥ 1. The set of u ∈ U(K) for which GAu ,` = GA,` holds for all primes ` has
density 1.

2.2. Neutral component. Let G◦A,` be the neutral component of GA,`, i.e., the connected component of GA,`
containing the identity. Note that G◦A,` is an algebraic subgroup of GA,`. Let

γA,` : π1(U)→ GA,`(Q`)/G◦A,`(Q`)

be the surjective homomorphism obtained by composing ρA,` with the obvious quotient map. For any
u ∈ U(K) satisfying GAu ,` = GA,`, the specialization of γA,` at u gives the homomorphism γAu ,` : GalK →
GAu ,`(Q`)/G◦Au ,`(Q`).

Lemma 2.4.
(i) The kernel of γA,` is independent of `.

(ii) Suppose n ≥ 1. Then there is a set S ⊆ U(K) with density 1 such that the specialization of γA,` at u is
surjective for all ` and u ∈ S.

Proof. If A is an abelian variety over K, then part (i) was proved by Serre [Ser00, 133]; see also [LP97]. We
may now assume that n ≥ 1.

Now suppose that there are primes ` and `′ such that ker γA,` 6= ker γA,`′ . By Lemma 2.2(ii) and Hilbert’s
irreducibility theorem, there is a point u ∈ U(K) such that GAu ,` = GA,`, GAu ,`′ = GA,`′ , and such that the
kernel of the specializations of γA,` and γA,`′ at u give different subgroups of GalK. So ker γAu ,` 6= ker γAu ,`′

which contradicts the case of (i) we have already proved. Therefore, ker γA,` = ker γA,`′ for any primes `
and `′.

We now prove (ii). Let S be the set of u ∈ U(k) for which the specialization of γA,2 at u is surjective. The
set S has density 1 by Hilbert’s irreducibility theorem. Take any point u ∈ S. Since each γA,` is surjective
and ker γA,` is independent of `, we find that the specialization of γA,` at u is surjective for one prime ` if
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and only if it is surjective for all primes `. Therefore, the specialization of γA,` at u is surjective for all ` by
our definition of S. �

For an abelian variety A defined over K, we denote by Kconn
A the subfield of K fixed by the kernel of the

homomorphism

γA,` : GalK
ρA,`−−→ GA,`(Q`)→ GA,`(Q`)/G◦A,`(Q`).(2.1)

Equivalently, Kconn
A is the smallest extension of K in K that satisfies ρA,`(GalKconn

A
) ⊆ G◦A,`(Q`). By Lemma 2.4(i),

the number field Kconn
A is independent of `.

Proposition 2.5.
(i) The group G◦A,` is reductive.

(ii) The rank of the reductive group G◦A,` is independent of `.
(iii) Let R` be the commutant of G◦A,` in EndQ`

(V`(A)). The dimension of R` as a Q`-vector space is independent
of `.

(iv) Suppose that n ≥ 1. The set of u ∈ U(K) for which G◦Au ,` = G◦A,` for all primes ` has density 1.

Proof. We first consider the case where A is an abelian variety defined over a number field K. After replacing
A/K by its base extension to Kconn

A , we may assume without loss of generality that GA,` is connected for all
`. From Faltings, cf. [Fal86], we know that:

(a) The Q`[GalK]-module V`(A) is semisimple.
(b) The natural map End(A)⊗Z Q` ↪→ EndQ` [GalK ](V`(A)) is an isomorphism.

From (a), we deduce that GA,` is reductive. From (b), the commutant R` of GA,` in EndQ`
(V`(A)) is iso-

morphic to End(A)⊗Z Q`. In particular, the dimension of R` over Q` is independent of ` and the center
of R` is semisimple for all sufficiently large `. Serre proved part (i) in [Ser00, 133]; this also follows from
Theorem 1.2 of [LP97] since the dimension of the groups Hv,` that occur there do not depend on `.

It remains to consider the case where n ≥ 1. For a fixed `, Lemma 2.2(ii) implies that GAu ,` = GA,` for
some u ∈ U(K). In particular, G◦Au ,` = G◦A,`. The group G◦A,` = G◦Au ,` is thus reductive from part (i) in the
case of an abelian variety defined over a number field. This proves (i).

Take any two distinct primes ` and `′. By Lemma 2.2(ii), we have GAu ,` = GA,` and GAu ,`′ = GA,`′ for
some u ∈ U(K). In particular, G◦Au ,` = G◦A,` and G◦Au ,`′ = G◦A,`′ . By part (ii) in the case of an abelian variety
defined over a number field, the ranks of G◦Au ,` = G◦A,` and G◦Au ,`′ = G◦A,`′ are equal. Since ` and `′ are
arbitrary primes, we deduce that the rank of G◦A,` does not depend on `. This proves (ii).

Note that specialization gives an isomorphism V`(Au) = V`(A) for which the actions of the groups
GAu ,` ⊆ GA,` are compatible. Denote by R` the commutant of G◦A,` in EndQ`

(V`(A)). For u ∈ U(K), denote
by Ru,` the commutant of G◦Au ,` in EndQ`

(V`(A)).
Take any two distinct primes ` and `′. As above, we have G◦Au ,` = G◦A,` and G◦Au ,`′ = G◦A,`′ for some

u ∈ U(K). In particular, Ru,` = R` and Ru,`′ = R`′ . By part (iii) in the case of an abelian variety defined
over a number field, we deduce that dimQ`

R` is independent of `. This proves (iii).

It remains to prove that part (iv) holds; suppose n ≥ 1. For each prime `, let S` be the set of u ∈ U(K) for
which G◦Au ,` = G◦A,`; it has density 1 by Lemma 2.2(ii).

Take any u ∈ S2 and prime `. We have an inclusion of groups G◦Au ,` ⊆ G◦A,` and they are reductive by
part (i). The inclusion implies that Ru,` ⊆ R`. We have dimQ2 Ru,2 = dimQ2 R2 since u ∈ S2, and hence
dimQ`

Ru,` = dimQ`
R` by part (iii). Therefore, Ru,` = R`. The groups G◦Au ,2 and G◦A,2 have the same rank

since u ∈ S2, and hence G◦Au ,` and G◦A,` have the same rank by part (ii).
As noted above, we have Ru,`

∼= End(Au)⊗Z Q` and hence the Q`-algebra R` = Ru,`, and it center, are
semisimple for all ` greater than some constant b ≥ 2.

Applying Lemma 2.6 below, we deduce that G◦Au ,` = G◦A,` for all primes ` ≥ b. Therefore, G◦Au ,` = G◦A,`
holds for all primes ` with u ∈ S :=

⋂
`≤b S`. The set S has density 1 since it is a finite intersection of density

1 sets by Lemma 2.2(ii). Part (iv) now follows. �
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Lemma 2.6. [Win02, Lemma 7] Let F be a perfect field whose characteristic is 0 or at least 5. Let G1 ⊆ G2 be
reductive groups defined over F that have the same rank. Suppose we have a faithful linear representation G2 ↪→ GLV ,
where V is a finite dimension F-vector space, such that the centers of the commutants of G1 and G2 in EndF(V) are
the same F-algebra R. Suppose further that the commutative F-algebra R is semisimple. Then G1 = G2. �

2.3. Proof of Proposition 2.3. Let S be the set of u ∈ U(k) such that G◦Au ,` = G◦A,` for all primes ` and such
that the specialization of γ` at u is surjective for all primes `. The set S has density 1 by Proposition 2.5(iv)
and Lemma 2.4(ii).

Now take any u ∈ S and any prime `. Specialization gives an inclusion GAu ,` ⊆ GA,` and we have
G◦Au ,` = G◦A,` since u ∈ S. The group GA,`(Q`) is Zariski dense in GA,` since GA,` is defined as the Zariski
closure of a subgroup of GLV`(A)(Q`). So to prove that GAu ,` = GA,`, it suffices to show that the natural
injective homomorphism ϕ : GAu ,`(Q`)/G◦Au ,`(Q`) ↪→ GA,`(Q`)/G◦A,`(Q`) is surjective. If ϕ was not surjec-
tive, then the specialization of γ` at u would not be surjective which is impossible since u ∈ S. Therefore,
GAu ,` = GA,`. The proposition follows since S has density 1 and ` was arbitrary.

3. BIG `-ADIC IMAGES

Fix an abelian scheme π : A → U of relative dimension g ≥ 1, where U is a non-empty open subvariety
of Pn

K with K a number field and n ≥ 0. As noted in §2, this includes the case that A is an abelian variety
defined over K.

3.1. More `-adic monodromy groups. Similar to our definition of GA,`, we now define an `-adic mon-
odromy that is a group scheme over Z`. With notation as in §1.5, we have an algebraic group scheme
GLT`(A) defined over Z`. Note that the generic fiber of GLT`(A) is GLV`(A).

We define GA,` to be the Zariski closure of ρA,`(π1(U)) in GLT`(A); it is a group scheme defined over Z`.
The group schemes GA,` and GA,` determine each other. More precisely, GA,` is the generic fiber of GA,` and
GA,` is the Zariski closure of GA,` in GLT`(A).

Let G◦A,` be the Z`-group subscheme of GA,` that is the Zariski closure of G◦A,`.
Let SA,` be the Z`-group subscheme of G◦A,` that is the Zariski closure of the derived subgroup of G◦A,`.

3.2. An open image theorem. The following theorem says that the image of ρA,` is “large” for all suf-
ficiently large `. More precisely, ρA,`(π1(U)) contains SA,`(Z`)

′ and its index in GA,`(Z`) is uniformly
bounded for all sufficiently large `. The theorem also describes several important properties of the Z`-
group schemes G◦A,` and SA,`.

Theorem 3.1. There is a constant bA, depending only on A, such that the following hold for all primes ` ≥ bA:
(i) The Z`-group scheme G◦A,` is reductive and SA,` is semisimple.

(ii) We have ρA,`(π1(U)) ⊇ SA,`(Z`)
′ and ρA,`(π1(U)) ⊇ SA,`(F`)

′.
(iii) We have [GA,`(Z`) : ρA,`(π1(U))]�A 1.
(iv) The groups SA,`(Z`)

′ and SA,`(F`)
′ are perfect and all of their finite simple quotients are of Lie type in

characteristic `. We have G◦A,`(Z`)
′ = SA,`(Z`)

′.
(v) The cardinality of SA,`(Z`)/SA,`(Z`)

′ is finite and can be bounded in terms of g.
(vi) Suppose that H is a closed subgroup of SA,`(Z`), in the `-adic topology, whose image modulo ` contains
SA,`(F`)

′. Then H ⊇ SA,`(Z`)
′.

We will prove Theorem 3.1 in §3.4 by using the following lemma to reduce to the case of an abelian
variety over a number field.

Lemma 3.2. If Theorem 3.1 holds for abelian varieties over any number field K, then it holds in general.

Proof. We can assume that n ≥ 1. By Proposition 2.3, there is a u ∈ U(K) such that GAu ,` = GA,` for all
`. This implies that GAu ,` = GA,` and SAu ,` = SA,` hold for all `. Specialization by u gives inclusions
ρAu ,`(GalK) ⊆ ρA,`(π1(U)) ⊆ GA,`(Z`). It is now clear that Theorem 3.1 for the abelian variety Au/K
implies that Theorem 3.1 holds for A with bA := bAu . �
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3.3. An effective open image theorem. In this section, we assume that A is an abelian variety of dimension
g ≥ 1 defined over a number field K. We will state a version of Theorem 3.1 due to the author that gives
a value of bA in terms of various invariants of A. Before stating the results, we need to recall some quantities.

The algebraic group G◦A,` is reductive and its rank is independent of `, cf. Proposition 2.5(ii). Denote the
common rank of the groups G◦A,` by r.

Let p be any non-zero prime ideal ofOK for which A has good reduction. Denote by PA,p(x) the Frobenius
polynomial of A at p; it is a monic degree 2g polynomial with integer coefficients. For a prime ` satisfying
p - `, the representation ρA,` is unramified at p and we have

PA,p(x) = det(xI − ρA,`(Frobp)).

Let ΦA,p be the subgroup of C× generated by the roots of PA,p(x).
We denote by h(A) the (logarithmic absolute) Faltings height of A obtained after base extending to any

finite extension of K over which A has semistable reduction, see §5 of [Cha86]. In particular, note that
h(AL) = h(A) for any finite extension L/K.

Theorem 3.3. Let A be an abelian variety of dimension g ≥ 1 defined over a number field K. Let q be a non-zero
prime ideal of OK for which A has good reduction and ΦA,q is a free abelian group of rank r. Then there are positive
constants c and γ, depending only on g, such that Theorem 3.1 holds with

bA = c · (max{[K : Q], h(A), N(q)})γ.

Proof. Take any prime ` ≥ bA. Parts (i) and (iii) follow from parts (c) and (a), respectively, of Theorem 1.2
in [Zyw19]. Theorem 1.2(d) in [Zyw19] implies that ρA,`(GalK) ⊇ SA,`(Z`)

′. Reducing modulo ` and using
that SA,` is smooth, we find that ρA,`(GalK) ⊇ SA,`(F`)

′; this proves (ii). Parts (iv) and (v) of Theorem 3.1
are shown to hold in the proof of Theorem 1.2 in [Zyw19], cf. Proposition 4.25 of [Zyw19]. Part (vi) of
Theorem 3.1 is also shown to hold in the proof of Theorem 1.2 in [Zyw19], cf. Lemmas 4.23 and 4.24 of
[Zyw19]. �

Remark 3.4. From Lemma 2.7 of [Zyw19], the set of non-zero prime ideals p of OK for which A has good
reduction and ΦA,p is a free abelian group of rank r has density 1/[Kconn

A : K]. In particular, there do exists
prime ideals q as in the statement of Theorem 3.3.

3.4. Proof of Theorem 3.1. The theorem follows immediately from Lemma 3.2 and Theorem 3.3 (with
Remark 3.4 to show that the assumptions are not vacuous).

4. GEOMETRIC MONODROMY

Fix an abelian scheme π : A → U of relative dimension g ≥ 1, where K is a number field and U is a
non-empty open subvariety of Pn

K for some n ≥ 1. Fix notation as in §2 and §3. Take a constant bA as in
Theorem 3.1.

In this section, we will prove the following constraints on the images of the representations ρA,` when
restricted to the geometric fundamental group π1(UK); there is no harm in suppressing base points below
since π1(UK) is a normal subgroup of π1(U).

Proposition 4.1. There is an open subgroup H of π1(UK) such that the following hold:
(a) ρA,`(H) lies in the group of Q`-points of the derived subgroup of G◦A,` for all primes `,
(b) ρA,`(H) ⊆ SA,`(Z`)

′ for all primes ` ≥ bA.

4.1. The algebraic monodromy group. Fix a field embedding K ⊆ C. Let A → UC be the fiber of A → U
over UC. Associated to π : A(C)→ U(C), we define the local system F := R1π∗Z of Z-modules on U(C),
where we are viewing U(C) with its familiar analytic topology. For each u ∈ U(C), the fiber Fu of F at u
is the cohomology group H1(Au(C), Z). Fix a point u0 ∈ U(C) and define Λ := H1(Au0(C), Z); it is a free
abelian group of rank 2g. The local system F gives rise to a monodromy representation

$ : π
top
1 (U(C), u0)→ AutZ(Λ) ∼= GL2g(Z),
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where we are now using the usual topological fundamental group. Let G be the Z-group subscheme of
GL2g,Z obtained by taking the Zariski closure of the image of $; we call it the algebraic monodromy group of
the abelian scheme A.

Lemma 4.2. The neutral component (GQ)
◦ of the linear algebraic group GQ is semisimple.

Proof. It suffices to prove that the neutral component of GC is semisimple. From Deligne [Del71, Corol-
laire 4.2.9], the neutral component of GC is semisimple; this uses that UC is smooth and connected and that
π : A → UC is smooth and proper. �

Lemma 4.3. There is an open and normal subgroup H of π1(UK) such that the Zariski closure of ρA,`(H) in GLV`(A)

is connected and semisimple for all `.

Proof. The homomorphism π1(UC) → π1(UK) induced by the embedding K ⊆ C is an isomorphism, so it
suffices to prove the lemma with K replaced by C. Recall that there is a natural isomorphism between the
profinite completion of π

top
1 (U(C), u0) and π1(UC) (only uniquely defined up to an inner automorphism

since we are suppressing base points in our étale fundamental groups).
Take any integer e ≥ 1. Let ρA,`e : π1(UC)→ GL2g(Z/`eZ) be the representation arising from the locally

constant sheafA[`e] of Z/`eZ-modules on UC. By choosing compatible bases, these representation combine
to give a single representation ρA,` : π1(UC) → GL2g(Z`). Let S be the Zariski closure of ρA,`(π1(UC)) in
GL2g,Q`

. Since A is the fiber of A above UC, it suffices to prove the lemma with ρA,` replaced by ρA,`.
Note that A[`e] gives a local system of Z/`eZ-modules on U(C) that is dual to R1π∗(Z/`eZ), where

π : A(C) → U(C); the `e-torsion of Au(C) for a point u ∈ U(C) is isomorphic to the homology group
H1(Au(C), Z/`eZ) which is dual to the corresponding cohomology group. Since R1π∗(Z/`eZ) is isomor-
phic to F/`eF , we find that the representation ρA,`e : π1(UC)→ GL2g(Z/`eZ) is isomorphic to the dual of
the representation obtained by taking the profinite completion of

π
top
1 (U(C), u0)

$−→ GL2g(Z)→ GL2g(Z/`eZ).

Therefore, ρA,` is isomorphic to the dual of the representation obtained from π
top
1 (U(C), u0)

$−→ GL2g(Z) ⊆
GL2g(Z`) by taking the profinite completion and extending using continuity.

Let H0 be the kernel of π
top
1 (U(C), u0)

$−→ G(Q)/G◦Q(Q). The Zariski closure of $(H0) in GL2g,Q`
is G◦Q`

which is connected and semisimple by Lemma 4.2. The lemma will then hold by taking H to be the profinite
completion of H0. �

4.2. Proof of Proposition 4.1. By Lemma 4.3, there is an open and normal subgroup H of π1(UK) such that
the Zariski closure S` of ρA,`(H) in GLV`(A) is connected and semisimple for all `. We have S` ⊆ GA,` and
hence S` ⊆ G◦A,` since S` is connected. Since G◦A,` is reductive, we find that S` is contained in the derived
subgroup of G◦A,`. This proves (a).

Now take any prime ` ≥ bA. By part (a) and ρA,`(π1(U)) ⊆ GA,`(Z`), we have ρA,`(H) ⊆ SA,`(Z`).
Define the homomorphism

β` : H → SA,`(Z`)→ B`,

where B` := SA,`(Z`)/SA,`(Z`)
′. By Theorem 3.1(v), the group B` is abelian and its cardinality divides a

positive integer Q that depends only on g. In particular, Q is independent of `. So to prove (a), it suffices to
show that H has only finitely many abelian quotients whose cardinality divides Q.

The group H is the étale fundamental group of a connected variety X of finite type over K (let X → UK
be an étale cover corresponding the subgroup H of π1(UK)). From [SGA7.1], II.2.3.1, we find that H is
finitely generated as a topological group. In particular, the abelianization Hab of H, i.e, the quotient of H by
its commutator subgroup, is a finitely generated topological group. Viewing Hab as an additive group, the
quotient Hab/QHab is a finitely generated abelian group whose exponent divides Q. Therefore, Hab/QHab

has finite order and hence H has only finitely abelian quotients whose cardinality divides Q.
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5. MAIN REDUCTION

Let K be a number field. Fix an abelian scheme π : A → U of relative dimension g ≥ 1, where U is a
non-empty open subvariety of Pn

K for some n ≥ 1. Fix notation as in §2 and §3. Take a constant bA as in
Theorem 3.1.

Define the set

B := {u ∈ U(K) : ρAu ,`(GalK) 6⊇ SA,`(F`)
′ for some prime ` ≥ bA}.

The goal of this section is to prove the following proposition which reduces the proof of Theorem 1.1 to
showing that the set B ⊆ Pn(K) has density 0.

Proposition 5.1. Suppose that B has density 0. Then there is a constant C such that [ρA(π1(U)) : ρAu(GalK)] ≤ C
holds for all u ∈ U(K) away from a set of density 0.

Remark 5.2. Note that SA,`(F`)
′ is a normal subgroup of GA,`(F`) while ρAu ,`(GalK) is a subgroup of

GA,`(F`) uniquely defined up to conjugation. It thus makes sense to ask whether the inclusion ρAu ,`(GalK) ⊇
SA,`(F`)

′ holds or not.

5.1. Proof of Proposition 5.1. Let W ⊆ π1(U) be the kernel of γA,` from §2.2; it is a normal and open sub-
group of π1(U) and is independent of ` by Lemma 2.4(i). The group ρA(W)′ is thus normal in ρA(π1(U)).
The homomorphism γA,` is surjective so the integer [GA,`(Q`) : G◦A,`(Q`)] is independent of `.

For a prime ` ≥ bA, we have ρA,`(π1(U)) ⊇ SA,`(F`)
′. Hilbert’s irreducibility theorem implies that

ρAu ,`(GalK) ⊇ SA,`(F`)
′ for all u ∈ U(K) away from a set of density 0. Thus there is no harm in replacing

bA by a larger integer. In particular, we may assume that bA > 7 and bA > [π1(U) : W].

Lemma 5.3. Take any u ∈ U(K) satisfying GAu ,` = GA,` for all `. Then for any integer m > 1, we have
ρAu ,m(GalKconn

Au
) = ρAu ,m(GalK) ∩ ρA,m(W).

Proof. Fix a prime `|m. The kernel of the homomorphism ρA,m(π1(U)) → GA,`(Q`)/G◦A,`(Q`) obtained
by composing the `-adic projection with the obvious quotient map is equal to ρA,m(W). Similarly the ker-
nel of the homomorphism ρAu ,m(GalK) → GAu ,`(Q`)/G◦Au ,`(Q`) obtained by composing the `-adic pro-
jection with the obvious quotient map is equal to ρAu ,m(GalKconn

Au
). From GAu ,` = GA,` and the inclusion

ρAu ,m(GalK) ⊆ ρA,m(π1(U)), we deduce that ρAu ,m(GalKconn
Au

) = ρAu ,m(GalK) ∩ ρA,m(W). �

Lemma 5.4. The set of u ∈ U(K) that satisfy

ρAu ,`(GalKconn
Au

)′ = SA,`(Z`)
′

for all primes ` ≥ bA has density 1. For all ` ≥ bA, we have ρA,`(W)′ = SA,`(Z`)
′.

Proof. Let B1 be the set of u ∈ U(K) satisfying the following conditions:
(a) GAu ,` = GA,` for all primes `,
(b) ρAu ,`(GalK) ⊇ SA,`(F`)

′ for all primes ` ≥ bA.

The set of u ∈ U(K) satisfying (a) has density 1 by Proposition 2.3. The set of u ∈ U(K) that satisfy (b) has
density 1 since the set B in the statement of Proposition 5.1 has density 0 by assumption. Therefore, B1 has
density 1.

Take any u ∈ B1 and set L := Kconn
Au

. Take any prime ` ≥ bA. It suffices to prove that ρAu ,`(GalL)
′ and

ρA,`(W)′ both equal SA,`(Z`)
′.

We claim that ρAu ,`(GalL)
′ ⊇ SA,`(F`)

′. Since L/K is a Galois extension and SA,`(F`)
′ is a (normal)

subgroup of ρAu ,`(GalK), the group H := SA,`(F`)
′ ∩ ρAu ,`(GalL) is a normal subgroup of SA,`(F`)

′ of
index at most

[L : K] = [GAu ,`(Q`) : G◦Au ,`(Q`)] = [GA,`(Q`) : G◦A,`(Q`)] = [π1(U) : W].

By our choice of bA and ` ≥ bA, we have [SA,`(F`)
′ : H] ≤ [π1(U) : W] < bA ≤ `. Now suppose

that H 6= SA,`(F`)
′. So there is a simple group S that is a quotient of SA,`(F`)

′ and satisfies |S| < `.
Theorem 3.1(iv) implies that S is of Lie type type in characteristic ` and hence ` divides |S|. This contradicts
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|S| < `, so we deduce that H = SA,`(F`)
′. Therefore, ρAu ,`(GalL) ⊇ H = SA,`(F`)

′. Since SA,`(F`)
′ is

perfect by Theorem 3.1(iv), we have ρAu ,`(GalL)
′ ⊇ SA,`(F`)

′′ = SA,`(F`)
′ which proves the claim.

Since u ∈ B1, Lemma 5.3 implies that ρAu ,`(GalL) is a subgroup of ρA,`(W) ⊆ G◦A,`(Z`). Therefore,

ρAu ,`(GalL)
′ ⊆ ρA,`(W)′ ⊆ G◦A,`(Z`)

′ = SA,`(Z`)
′,

where the last equality uses Theorem 3.1(iv). So to prove the lemma it thus suffices to show that ρAu ,`(GalL)
′ ⊇

SA,`(Z`)
′. The image of ρAu ,`(GalL)

′ in SA,`(F`) is ρAu ,`(GalL)
′ and hence contains SA,`(F`)

′ by our claim.
Theorem 3.1(vi) implies that ρAu ,`(GalL)

′ ⊇ SA,`(Z`)
′ as desired �

Lemma 5.5. Take any prime p, any subgroup G of GL2g(Fp), and any composition factor S of G. There is an integer
J, depending only on g, such that S is abelian, S is of Lie type in characteristic p, or |S| < J.

Proof. This is an immediate consequence of Theorem 0.2 of [LP11]. �

Let M be the product of all primes ` ≤ max{bA, J}, where J is as in Lemma 5.5. Define the group

B := ρA,M(W)′ ×∏
`-M
SA,`(Z`)

′.

After the following lemma, we will prove that ρA(W)′ is equal to B.

Lemma 5.6. Let H be a closed subgroup of B. Suppose that the projection maps H → ρA,M(W)′ and H →
SA,`(Z`)

′, with ` - M, are surjective. Then H = B.

Proof. After choosing bases of the Z`-modules T`(A), one can identifyBwith a closed subgroup of GL2g(Ẑ).
For each integer e ≥ 2, let Be be the kernel of the reduction modulo e homomorphism B ⊆ GL2g(Ẑ) →
GL2g(Z/eZ). We have B = lim←−e

B/Be, where e is ordered by divisibility. Since H is a closed subgroup of
B, it suffices to prove that H → B/Be is surjective for all e ≥ 2.

Suppose that H → B/Be is not surjective for some e ≥ 2. We have an isomorphism B/Be ∼= QM ×
∏`-M Q` of groups for which all the following hold:

• QM and Q` (with ` - M) are finite quotients of ρA,M(W)′ and SA,`(Z`)
′, respectively,

• Q` = 1 for all but finitely many primes ` - M,
• the projection maps H → B/Be → QM and H → B/Be → Q` (with ` - M) are surjective.

The last condition uses our assumptions on H in the statement of the lemma.

Since H → B/Be is not surjective, there is an integer b > 1 relatively prime to M and a proper subgroup
H0 of QM ×∏`|b Q` such that the projection map H0 → Qm is surjective for all m ∈ {M} ∪ {` : `|b}.
So there are non-empty and disjoint subsets I1 and I2 of {M} ∪ {` : `|b} and a proper subgroup H1 of
∏m∈I1

Qm ×∏m∈I2
Qm such that the projection map H1 → ∏m∈Ii

Qm is surjective for each i ∈ {1, 2}.
Set Gi := ∏m∈Ii

Qm for 1 ≤ i ≤ 2. Let N and N′ be the kernel of the projection maps H1 → G2
and H1 → G1, respectively. We have H1 ⊆ G1 × G2 and hence N ⊆ G1 × {1} and N′ ⊆ {1} × G2. We
can thus identify N and N′ with normal subgroups of G1 and G2, respectively. By Goursat’s lemma (see
[Rib76, Lemma 5.2.1]), the image of H1 in G1/N × G2/N′ is the graph of an isomorphism G1/N ∼= G2/N′.

Suppose that G1/N and G2/N′ are both trivial. We have N = G1 and N′ = G2 and hence H1 = G1 × G2.
However, this contradicts that H1 is a proper subgroup of G1 × G2. Therefore, there is a simple group S
that is isomorphic to a quotient of both G1 and G2. In particular, there are distinct m1, m2 ∈ {M} ∪ {` : `|b}
such that S is isomorphic to a quotient of both Qm1 and Qm2 . We may assume that m2 = ` is a prime not
dividing M.

Since ` - M, every simple quotient of Qm2 = Q` is non-abelian and of Lie type in characteristic ` by
Theorem 3.1(iv). Therefore, S is a non-abelian simple group of Lie type in characteristic `.

Suppose that m1 is a prime p that does not M. By the same argument, S is also a non-abelian simple
group of Lie type in characteristic p. However, there are no simple groups that are of Lie type in both
characteristic ` and p, where ` and p are distinct primes with ` > 7 (we have ` > 7 since ` - M). This
contradiction implies that m1 = M. In particular, S is a non-abelian group that is a quotient of QM and
hence also of ρA,M(W)′.
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Define m := ∏`|M `. The kernel of the quotient homomorphism

ρA,M(W)′ ⊆ AutZm(Tm(A))→ AutZ/mZ(Tm(A)/mTm(A)) ∼= ∏p|M GL2g(Fp)

is a product of pro-p groups with p|M; in particular, it is prosolvable. So there is a prime p|M and a
subgroup G of GL2g(Fp) such that S is isomorphic to a composition factor of G. Since S is non-abelian,
Lemma 5.5 implies that S is of Lie type in characteristic p or satisfies |S| < J. The group S cannot be of Lie
type in characteristic p since again there are no simple groups that are of Lie type in both characteristic ` and
p, where ` and p are distinct primes with ` > 7. Therefore, |S| < J. Since S is of Lie type in characteristic `,
it has an element of order ` and hence ` ≤ |S| < J. However, this contradicts that ` - M. This contradiction
proves that H → B/Be is surjective for all e ≥ 2 as desired. �

Lemma 5.7. We have ρA(W)′ = B.

Proof. Take any prime ` ≥ bA. By Theorem 3.1(ii), we have ρA,`(π1(U)) ⊇ SA,`(Z`)
′. We thus have

inclusions

SA,`(Z`)
′ ⊆ ρA,`(W) ⊆ G◦A,`(Z`).(5.1)

By Theorem 3.1(iv), the commutators subgroups of both SA,`(Z`)
′ and G◦A,`(Z`) are equal to SA,`(Z`)

′.
Taking commutators of the groups in (5.1), we deduce that ρA,`(W)′ = SA,`(Z`)

′.
We can identify ρA(W)′ with a closed subgroup of ρA,M(W)′ ×∏`-M ρA,`(W)′ = B. Since the projections

of ρA(W)′ to ρA,M(W)′ and ρA,`(W)′ = SA,`(Z`)
′, with ` - M, are surjective, we deduce that ρA(W)′ = B

by Lemma 5.6. �

Lemma 5.8. The set of u ∈ U(K) for which ρAu(GalK) ⊇ ρA(W)′ holds has density 1.

Proof. Take any u ∈ U(K) that satisfies all the following conditions with L := Kconn
Au

:

(a) GAu ,` = GA,` for all `,
(b) ρAu ,M(GalK) = ρA,M(π1(U))
(c) ρAu ,`(GalL)

′ = SA,`(Z`)
′ for all ` ≥ bA

By Lemma 5.3 with (a) and (b), we have ρAu ,M(GalL) = ρAu ,M(GalK) ∩ ρA,M(W) = ρA,M(W). In particular,
ρAu ,M(GalL)

′ = ρA,M(W)′. From this and (c), we deduce that ρAu(GalL)
′ is a closed subgroup of B =

ρA,M(W)′ ×∏`-M SA,`(Z`)
′ for which the projection maps to ρA,M(W)′ and SA,`(Z`)

′, with ` - M, are all
surjective. By Lemmas 5.6 and 5.7, we have ρAu(GalL)

′ = B = ρA(W)′.
To complete the lemma, it thus suffices to show that the set of u ∈ U(K) that satisfy each of the conditions

(a), (b) and (c) has density 1. The set of u ∈ U(K) that satisfy (a) has density 1 by Proposition 2.3. The set of
u ∈ U(K) that satisfy (b) has density 1 by Lemma 2.2(i). The set of u ∈ U(K) that satisfy (c) has density 1
by Lemma 5.4. �

Let
βA : π1(U)→ ρA(π1(U))/ρA(W)′

be the surjective homomorphism obtained by composing ρA with the obvious quotient map.

Lemma 5.9. The group βA(π1(UK)) is finite.

Proof. We need to prove that there is an open subgroup H of π1(UK) such that ρA(H) is contained in
ρA(W)′ = B = ρA,M(W)′ ×∏`-M SA,`(Z`)

′. By Proposition 4.1, there is an open subgroup H of π1(UK)

such that ρA,`(H) ⊆ SA,`(Z`)
′ for all ` ≥ bA. It thus suffices to show that there is an open subgroup H of

π1(UK) such that ρA,M(H) ⊆ ρA,M(W)′.
The group ρA,M(W) is open in ∏`|M G◦A,`(Q`) since ρA,`(W) is open in G◦A,`(Q`) for all `|M (note that

each ρA,`(W) has an open pro-` subgroup). For each `, let SA,` be the derived subgroup of G◦A,`. Note
that for every open subgroup H of G◦A,`(Q`), the commutator subgroup H′ is open in SA,`(Q`), cf. [HL15,
Proposition 3.2]. Therefore, ρA,M(W)′ is an open subgroup of ∏`|M SA,`(Q`).

By Proposition 4.1, there is an open subgroup H of π1(UK) such that ρA,M(H) ⊆ ∏`|M SA,`(Q`). Since
ρA,M(H) is compact in ∏`|M SA,`(Q`) and ρA,M(W)′ is open in ∏`|M SA,`(Q`), we find that ρA,M(H) ∩
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ρA,M(W)′ is a finite index subgroup of ρA,M(H). So after replacing H by a suitable open subgroup, we will
have ρA,M(H) ⊆ ρA,M(W)′. �

Let C be the cardinality of βA(π1(UK)); it is finite by Lemma 5.9. Take any u ∈ U(K) for which
ρAu(GalK) ⊇ ρA(W)′. We will now show that [ρA(π1(U)) : ρAu(GalK)] ≤ C. Since the set of u ∈ U(K)
satisfying ρAu(GalK) ⊇ ρA(W)′ has density 1 by Lemma 5.8, this will complete the proof of the proposition.

Let βA,u : GalK → ρA(π1(U))/ρA(W)′ be the homomorphism obtained by specializing βA at u. We have

[ρA(π1(U))/ρA(W)′ : βA,u(GalK)] ≤ C

since the homomorphism

π1(U)
ρA−→ (ρA(π1(U))/ρA(W)′)/βA(π1(UK))

is surjective and factors through GalK (in particular, its specialization at a point u ∈ U(K) is independent
of the choice u). Since ρAu(GalK) ⊇ ρA(W)′, we have

[ρA(π1(U)) : ρAu(GalK)] = [ρA(π1(U))/ρA(W)′ : ρAu(GalK)/ρA(W)′]

= [ρA(π1(U))/ρA(W)′ : βA,u(GalK)]

≤ C.

This completes the proof of Proposition 5.1.

Remark 5.10. The above constant C is precisely the one described in §1.2. With notation as in §1.2, the group
M is equal to ρA(W). In §9, we will show that the set B has density 0 and this will imply, by Proposition 5.1,
that Theorem 1.1 holds with this particular constant C.

6. EXPLICIT HILBERT IRREDUCIBILITY

Let U be a nonempty open subvariety of Pn
K for some integer n ≥ 1, where K is a number field. Let

ρ : π1(U)→ G

be a continuous and surjective homomorphism, where G is a finite group. For each point u ∈ U(K), we
obtain a homomorphism ρu : GalK → G by specializing ρ at u; it is uniquely defined up to conjugation by
an element of G.

Let Gg be the image of π1(UK) under ρ; it is a well-defined normal subgroup of G. Let L be the minimal
extension of K in K for which Gg is the image of π1(UL). We have a natural short exact sequence

1→ Gg → G
ϕ−→ Gal(L/K)→ 1.

Let U be the open subscheme of Pn
OK

that is the complement of the Zariski closure of Pn
K −U in Pn

OK
.

The OK-scheme U has generic fiber U. Fix a finite set S of non-zero prime ideals of OK such that ρ arises
from a continuous homomorphism $ : π1(UO)→ G, where O is the ring of S -integers in K.

Theorem 6.1. With notation as above, fix a Galois extension F ⊆ L of K and a set C ⊆ G that is stable under
conjugation by G. Define

δ := max
κ

|C ∩ κ|
|Gg|

,

where κ varies over the Gg-cosets of ϕ−1(Gal(L/F)). Assume that δ < 1. Then for x ≥ 2,

|{u ∈ U(K) : H(u) ≤ x, ρu(GalK) ⊆ C}| �U,F,δ x(n+1/2)[K:Q] log x + |S |4n+4 + |C|2n+2 · |Gg|4n+4.

Recall that Hilbert’s irreducibility theorem implies that ρu(GalK) = G for all u ∈ U(K) away from a
set of density 0. Corollary 6.2 shows how Theorem 6.1 can be viewed as an explicit version of Hilbert’s
irreducibility theorem.

Corollary 6.2. For x ≥ 2, we have

|{u ∈ U(K) : H(u) ≤ x, ρu(GalK) 6= G}| �U,L,|G| x[K:Q](n+1/2) log x + |S |4n+4.
14



Proof. For each u ∈ U(K), the quotient map ρu(GalK) → G/Gg is surjective. So if ρu(GalK) 6= G, then
ρu(GalK) is contained in a maximal subgroup M of G for which M→ G/Gg is surjective. It thus suffices to
bound |{u ∈ U(K) : H(u) ≤ x, ρu(GalK) ⊆

⋃
g∈G gMg−1}| for any such M; the corollary will then follow

by summing over all M (the number of such maximal subgroups can be bounded in terms of |G|).
Take any maximal subgroup M of G for which the quotient map M → G/Gg is surjective. Define C :=

∪g∈G gMg−1 = ∪g∈Gg gMg−1, where the last equality uses our assumption that M → G/Gg is surjective.
We have C ∩ Gg = ∪g∈Gg g(M ∩ Gg)g−1 since Gg is normal in G. The group M ∩ Gg is a proper subgroup
of Gg since M 6= G and M → G/Gg is surjective. Jordan’s lemma ([Ser03, Theorem 4’]) implies that
C ∩ Gg 6= Gg. In particular, δ := |C ∩ Gg|/|Gg| ≤ 1− 1/|Gg| < 1. Applying Theorem 6.1 with F = L, we
have

|{u ∈ U(K) : H(u) ≤ x, ρu(GalK) ⊆ C}| �U,L,|G| x[K:Q](n+1/2) log x + |S |4n+4

as desired. �

6.1. Equidistribution over finite fields. Fix a finite field Fq of cardinality q and denote its characteristic by
p. In this section, we denote by U a smooth affine variety over Fq that is geometrically irreducible and has
dimension d ≥ 1. Take positive integers N, r and δ such that UFq

is isomorphic to a closed subscheme of

AN
Fq

defined by the vanishing of r polynomials of degree at most δ.

Consider a surjective continuous homomorphism

$ : π1(U)→ G,

where G is a finite group. Define Gg := $(π1(UFq
)); it is a normal subgroup of G. We have a natural short

exact sequence

1→ Gg → G
ϕ−→ Gal(Fqe /Fq)→ 1

for some e ≥ 1. Let κ be the Gg-coset of G that is the inverse image of the q-th power Frobenius automor-
phism Frobq ∈ Gal(Fqe /Fq) under ϕ. If U(Fq) 6= ∅, we can also characterize κ as the unique Gg-coset of G
that contains ρ(Frobu) for all u ∈ U(Fq).

Theorem 6.3. Fix notation as above and assume that p - |Gg|. Let C ⊆ κ be a set stable under conjugation by G.
Then

|{u ∈ U(Fq) : $(Frobu) ∈ C}| = |C|
|Gg|

|U(Fq)|+ ON,r,δ
(
|C|1/2|Gg|qd−1/2).

Proof. (Sketch) This is essentially Theorem 1.1 of [Kow06a] due to Kowalski; the key difference is that we
are more explicit with the dependencies in the implicit constant (we also have |Gg| in our error term instead
of |G|). We now sketch the minor changes that need to be made in Kowalski’s proof.

Choose any prime ` 6= p. Let V → UFq
be the finite étale Galois covering with group Gg corresponding to

the surjective homomorphism π1(UFq
)

ρ−→ Gg. By Propositions 4.5 and 4.4 of [Kow06b] and using p - |Gg|,
we have

σc(V, Q`) := ∑
i

dim Hi
c(V, Q`) ≤ c(N, r, δ) · |Gg|,

where c(N, r, δ) is a constant depending only on N, r and δ. Moreover, [Kow06b] gives an explicit value of
c(N, r, d). Proposition 4.7 of [Kow06b] and its proof imply that

σc(UFq
, π(ρ)) := ∑

i
Hi

c(UFq
, π(ρ)) ≤ c(N, r, δ) · |Gg| · dim π(6.1)

for any representation π : Gg → GLdim π(Q`), where π(ρ) denotes the lisse Q`-sheaf corresponding to
π ◦ ρ : π1(UFq

)→ GLdim π(Q`). Examining the proof of Theorem 1.1 of [Kow06a] with the bound (6.1), we
have ∣∣∣∣|{u ∈ U(Fq) : ρ(Frobu) ∈ C}| − |C||Gg|

|U(Fq)|
∣∣∣∣ ≤ c(N, r, δ) · |C|1/2|Gg|3/2qd−1/2

which gives the theorem. �
15



6.2. Sieving. Fix a subset B ⊆ Pn(K) with n ≥ 1. Let Σ be a set of non-zero primes ideals p of OK with
positive density. Let S be a finite subset of Σ. Suppose that there are real numbers 0 ≤ δ < 1 and c ≥ 1 such
that the image of the reduction modulo p map B → Pn(Fp) has cardinality at most δN(p)n + cN(p)n−1/2

for all p ∈ Σ−S .
The follow proposition uses the large sieve to bound |{u ∈ B : H(u) ≤ x}|; we will use it later to prove

Theorem 6.1.

Proposition 6.4. Fix notation and assumptions as above. For x ≥ 2, we have

|{u ∈ B : H(u) ≤ x}| �K,n,Σ (1− δ)−1 · x(n+1/2)[K:Q] log x + |S |4n+4 + ((1− δ)−1c)4n+4.

Proof. For each a = (a1, . . . , an+1) ∈ On+1
K , define

||a|| := max
1≤i≤n+1

max
σ
|σ(ai)|,

where σ runs over the field embeddings K ↪→ C. Note that ||·|| extends uniquely to a norm on On+1
K ⊗Z R.

Let B′ be the set of a ∈ On+1
K − {0} for which the image of a in Pn(K) lies in B. We first bound the

number of a ∈ B′ for which ||a|| ≤ x. For a non-zero prime ideal p ofOK, let B′p be the the image of B′ under
the reduction modulo p mapOn+1

K → Fn+1
p . Define ωp := 1− |B′p|/N(p)n+1. We may assume ωp < 1 since

otherwise B = ∅ and the proposition is trivial.
Now suppose p ∈ Σ−S . Using our assumption on the image of B modulo p and c ≥ 1, we find that

|B′p| ≤ (δN(p)n + cN(p)n−1/2) · |F×p |+ 1 ≤ δN(p)n+1 + cN(p)n+1/2

and hence |B′p|/N(p)n+1 ≤ δ + c/N(p)1/2. If N(p) ≥ 4c2/(1− δ)2, then

|B′p|/N(p)n+1 ≤ δ + c/(4c2/(1− δ)2)1/2 = (1 + δ)/2

and hence ωp ≥ (1− δ)/2.
Since Σ has positive density, there is a constant b ≥ 1 depending only on Σ such that

#{p ∈ Σ−S : y/2 ≤ N(p) ≤ y} �Σ y/ log y

holds for all real y satisfying y ≥ b and y ≥ |S |2.

• First take any x ≥ 2 satisfying

x[K:Q]/2 ≥ max{b, |S |2, 8c2/(1− δ)2}.
The large sieve ([Ser97, §12.1]) implies that for any Q ≥ 1, we have

|{a ∈ B′ : ||a|| ≤ x}| �K,n
max{x(n+1)[K:Q], Q2(n+1)}

L(Q)
,(6.2)

where
L(Q) := ∑

a
∏
p|a

ωp

1−ωp

and the sum is over the square-free ideals a of OK with norm at most Q. We interpret (6.2) as being the
trivial bound +∞ when L(Q) = 0.

Set Q := x[K:Q]/2. Take any prime p ∈ Σ −S with Q/2 ≤ N(p) ≤ Q. We have N(p) ≥ 1
2 x[K:Q]/2 ≥

4c2/(1− δ)2 and hence ωp ≥ (1− δ)/2. Since t/(1− t) is increasing on the interval [0, 1), we have ωp/(1−
ωp) ≥ ((1− δ)/2)/(1− (1− δ)/2) = (1− δ)/(1 + δ). Therefore,

L(Q) ≥ ∑
p∈Σ−S

Q/2≤N(p)≤Q

1− δ

1 + δ
≥ 1− δ

2
· #{p ∈ Σ−S : Q/2 ≤ N(p) ≤ Q}.

We have Q = x[K:Q]/2 ≥ max{b, |S |2} and hence L(Q) �Σ (1− δ)Q/ log Q �K (1− δ) x[K:Q]/2/ log x.
From (6.2), we deduce that

|{a ∈ B′ : ||a|| ≤ x}| �K,n,Σ, (1− δ)−1 · x(n+1/2)[K:Q] log x.
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• Now suppose that x ≥ 2 satisfies x[K:Q]/2 ≤ max{b, |S |2, 8c2/(1− δ)2}. Therefore,

|{a ∈ B′ : ||a|| ≤ x}| ≤ |{a ∈ On+1
K : ||a|| ≤ x}|

�K,n x(n+1)[K:Q]

≤ (max{b, |S |2, 8c2/(1− δ)2})2n+2.

Combining both cases for x ≥ 2 and using b�Σ 1 gives

|{a ∈ B′ : ||a|| ≤ x}| �K,n,Σ (1− δ)−1 · x(n+1/2)[K:Q] log x + |S |4n+4 + ((1− δ)−1c)4n+4.(6.3)

By the proposition in §13.4 of [Ser97], there is a constant c′, depending only on K and n, such that each
u ∈ Pn(K) is represented by a tuple a ∈ On+1

K with ||a|| ≤ c′H(u). In particular, we have |{u ∈ B : H(u) ≤
x}| ≤ |{a ∈ B′ : ||a|| ≤ c′x}|. The proposition now follows directly from (6.3) and c′ �K,n 1. �

6.3. Proof of Theorem 6.1. We may assume that the set C is non-empty since otherwise the bound in the
theorem is trivial.

Lemma 6.5. There is a finite set S1 of non-zero prime ideals of OK, depending only on U ⊆ Pn
K, such that

$(π1(UFp
)) = Gg for all non-zero prime ideals p /∈ S ∪S1 of OK satisfying p - |Gg|.

Proof. Define the closed subvariety Z := Pn
K − U of Pn

K. Let Z be the Zariski closure of Z in Pn
OK

; its
complement in Pn

OK
is U . For a commutative ring R, let GrR(1, n) be the Grassmannian of lines in Pn

R. In
§4H1 of [LSTX19], a closed subschemeW of GrOK (1, n) is constructed such that for each OK-algebra R and
line L ∈ (GrOK (1, n)−W)(R), the scheme theoretic intersection L ∩ ZR is finite and étale over Spec R. We
haveW 6= GrOK (1, n) by Bertini’s theorem. Let S1 be the (finite) set consisting of all non-zero prime ideals
p of OK for whichWFp 6= GrOK (1, n)Fp . Note that S1 depends only on U ⊆ Pn

K.
Now take any non-zero prime ideal p /∈ S ∪S1 of OK satisfying p - |Gg|. Let Oun

p be the ring of
integers in the maximal unramified extension of Kun

p of Kp in a fixed algebraic closure Kp. The ring Oun
p is

a complete discrete valuation ring with residue field Fp. Take any line L ∈ (GrOK (1, n)−W)(Fp). Since
GrOK (1, n) is smooth and W is a closed subscheme, there is a line L ∈ (GrOK (1, n) −W)(Oun

p ) whose
image in (GrOK (1, n)−W)(Fp) is L. Define the Oun

p -scheme V := UOun
p
∩ L. We have V = L −D, where

D := L ∩ZOun
p

. Observe that D is finite étale over SpecOun
p since L /∈ W(Oun

p ).
We claim that the homomorphism

π1(VKp
) = π1(UKp

∩ LKp
)→ π1(UKp

)
$→ G

has image Gg. Fix an embedding Kp ⊆ C. To prove the claim there is no harm in replacing Kp by the larger

algebraically closed field C. By Bertini’s theorem, the homomorphism π1(UC ∩ L) → π1(UC)
$→ G has

image Gg for a generic line L ∈ GrC(1, n)(C). The above claim follows by (topologically) deforming L in
GrC(1, n)(C) to a generic line; note that small changes in L do not change the image of the representation
since L intersects Z(C) only at smooth points and transversally at each of these points.

Choose a point a0 ∈ V(Fp) with a lift a1 ∈ V(Oun
p ). SinceD is finite étale over SpecOun

p , the Grothendieck
specialization theorem implies that the natural homomorphisms

π1(VKun
p

, a1)→ π1(VOun
p

, a1)← π1(VFp
, a0)

induce an isomorphism between the prime to p = char Fp quotients of π1(VKp
, a1) and π1(VFp

, a0). In the
present setting, an accessible proof of Grothendieck’s theorem can be found in [Wew99, §4]. Therefore, the
homomorphism

π1(VFp
, a0)→ π1(VOun

p
, a1)→ π1(U , a1)

$−→ G(6.4)

has the same image as π1(VKp
, a1) → π1(VOun

p
, a1) → π1(U , a1)

$−→ G which is Gg by our claim (we have
p - |Gg| since p - |Gg| by assumption).
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We have thus proved that the image of π1(UFp
∩ L)→ π1(UFp

)
$−→ G is Gg for all lines L ∈ (GrOK (1, n)−

W)(Fp). Since p /∈ S1, (GrOK (1, n)−W)Fp
is a non-empty open subvariety of GrOK (1, n)Fp

. By Bertini’s

theorem, we deduce that π1(UFp
)

$−→ G has image Gg. �

Let Σ be the set of non-zero prime ideals p of OK that split completely in F; it has positive density by the
Chebotarev density theorem.

Lemma 6.6. For any non-zero prime ideal p ∈ Σ−S of OK satisfying p - |Gg|, we have

|{u ∈ Pn(Fp) : u /∈ U (Fp) or $(Frobu) ∈ C}| ≤ δN(p)n + OU(|C|1/2|Gg|N(p)n−1/2).

Proof. We can view An
OK

= SpecOK[x1, . . . , xn] as an open subscheme of Pn
OK

via the morphism (a1, . . . , an) 7→
[a1, . . . , an, 1]. There is a non-zero polynomial f ∈ OK[x1, . . . , xn] that is squarefree in K[x1, . . . , xn] such that
U ′ := Spec(OK[x1, . . . , xn][ f−1]) is an open OK-subscheme of U . There is a finite set S2 of non-zero prime
ideals OK such that for all non-zero prime ideals p /∈ S2 of OK:

• U ′Fp
is an open affine subvariety of Pn

Fp
of dimension n that is geometrically irreducible,

• U ′Fp
is isomorphic to the closed subscheme of An+1

Fp
= Spec Fp[x1, . . . , xn, xn+1] defined by the equa-

tion f (x1, . . . , xn) · xn+1 = 1, where f is obtained from f by reducing its coefficients modulo p.
Note that f and S2 are choices that depends only on U ⊆ Pn

K.
Now take any prime ideal p ∈ Σ−S satisfying p - |Gg|. Let S1 be a set of prime ideals from Lemma 6.5.

Since S1 and S2 depend only on U ⊆ Pn
K, we may further assume that p /∈ S1 ∪S2; the lemma holds for

the finite number of excluded prime ideals by suitably increasing the implicit constant. Similarly, we may
also assume that U ′(Fp) is non-empty.

From $, we obtain a continuous homomorphism $p : π1(UFp)→ G. We have $p(UFp
) = Gg by Lemma 6.5

and p - |Gg|. Since U ′Fp
is a non-empty open subvariety of UFp , we can restrict $p to obtain a homomorphism

π1(U ′Fp
)→ G that satisfies $p(π1(U ′Fp

)) = $p(π1(UFp
)) = Gg.

There is a unique Gg-coset κ of G such that $p(Frobu) ∈ κ for all u ∈ U ′(Fp). By Theorem 6.3, applied to
the affine variety U ′Fp

and the representation ρp (and using p - |Gg|), we have

|{u ∈ U ′(Fp) : $(Frobu) ∈ C}| = |{u ∈ U ′(Fp) : $p(Frobu) ∈ C ∩ κ}|

=
|C ∩ κ|
|Gg|

|U ′(Fp)|+ OU(|C|1/2|Gg|N(p)n−1/2);

note that the implicit term depends only on U ⊆ Pn
K since U ′

Fp
is isomorphic to a closed subscheme of An+1

Fp

defined by the polynomial equation f (x1, . . . , xn) · xn+1 = 1, where f is a choice depending only on U.
Take any u ∈ U (Fp). Since p splits completely in F, we have (ϕ ◦ $p)(Frobp) ∈ Gal(L/F). Therefore,

κ ⊆ ϕ−1(Gal(L/F)). We thus have |C ∩ κ|/|Gg| ≤ δ by the definition of δ. Using this and |U ′(Fp)| =
N(p)n + OU(N(p)n−1/2), we find that

|{u ∈ Pn(Fp) : u /∈ U (Fp) or $(Frobu) ∈ C}|
≤ |{u ∈ U ′(Fp) : $(Frobu) ∈ C}|+ |Pn(Fp)−U ′(Fp)|
≤ δN(p)n + OU(|C|1/2|Gg|N(p)n−1/2),

where since C 6= ∅ we can absorb the various error terms. �

Define the set
B := {u ∈ U(K) : ρu(GalK) ⊆ C}.

For each p ∈ Σ−S , denote by Bp the image of B under the reduction modulo p map U(K) ⊆ Pn(K) →
Pn(Fp). Let S ′ be the finite set of primes p ∈ Σ that lie in S or divide |Gg|.

Take any p ∈ Σ−S ′ and u ∈ B. Denote by up ∈ Pn(Fp) the image of u modulo p. If up ∈ U (Fp), then
ρu(Frobp) = $(Frobup). Since u ∈ B, we deduce that up /∈ U (Fp) or $(Frobup) ∈ C. By Lemma 6.6, we
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deduce that
|Bp| ≤ δN(p)n + OU(|C|1/2|Gg|N(p)n−1/2)

for all p ∈ Σ−S ′. Take any x ≥ 2. By Proposition 6.4, we have

|{u ∈ B : H(u) ≤ x}| �U,F (1− δ)−1 · x(n+1/2)[K:Q] log x + |S ′|4n+4 + ((1− δ)−1|C|1/2|Gg|)4n+4

�δ x(n+1/2)[K:Q] log x + |S ′|4n+4 + |C|2n+2 · |Gg|4n+4

�n x(n+1/2)[K:Q] log x + |S |4n+4 + |C|2n+2 · |Gg|4n+4,

where the last inequality uses that |S ′| = |S |+ O(log |Gg|) and C 6= ∅.

7. DERANGEMENTS

Let G be a linear algebraic group defined over a finite field F` for which its neutral component G◦ is
semisimple and adjoint. Let S be the commutator subgroup of G◦(F`). Fix a group H satisfying

S ⊆ H ⊆ G(F`)

and fix a normal subgroup Hg of H. Define H0 := H ∩ G◦(F`); it is a normal subgroup of H that contains
S. Let r be the rank of G◦ and define m = [G(F`) : G◦(F`)].

Proposition 7.1. With notation as above, let M be a subgroup of H for which M 6⊇ S and for which the natural
homomorphisms M→ H/Hg and M→ H/H0 are surjective. Define the subset

C :=
⋃

h∈H

hMh−1

of H. Then there is a constant 0 ≤ δ < 1, depending only on r and m, satisfying

(7.1)
|C ∩ κ|
|Hg|

≤ δ + Or,m(1/`)

for every Hg-coset κ in H0 · Hg.

We will prove Proposition 7.1 by repeated reducing to simpler cases. Proposition 7.1 will be used to
prove a specialized version of Hilbert’s irreducibility theorem (Theorem 8.3). The notation Hg is chosen
because in our applications, H will be the image of an arithmetic fundamental group and Hg will be the
image of its geometric subgroup.

7.1. A theorem of Fulman and Guralnick. Consider a finite group H acting on a set Ω. An element h ∈ H
is called a derangement on Ω if it has no fixed points. For a non-empty subset B ⊆ H, let δ(B, Ω) be the
proportion of elements in B that are derangements on Ω.

The following is a slight variant of a result of Fulman and Guralnick.

Theorem 7.2 (Fulman–Guralnick). Let G be a connected, geometrically simple and adjoint linear algebraic group
of rank r defined over a finite field Fq. Let S be the commutator subgroup of G(Fq) and fix a group S ⊆ H ⊆ G(Fq).
Fix a maximal subgroup M of H satisfying M 6⊇ S and define Ω = H/M with H acting by left multiplication. Then
for every S-coset κ in H, we have

δ(κ, Ω) ≥ δ + Or(1/q)
with 0 < δ ≤ 1 a constant that depends only on r.

Proof. Since G is geometrically simple and adjoint group, by taking q sufficiently large in terms of r, we
may assume that S is a non-abelian simple group and that H has socle S. Conjugation on S allows us to
view G(Fq), and hence also H, as a subgroup of the automorphism group of S. Our theorem is then a
consequence of Corollary 7.4 in [FG12] and the remark following it; note that since H ⊆ G(Fq), H lies in
the group of inner-diagonal automorphisms of S. �

Remark 7.3. With notation as in Theorem 7.2, define the set C :=
⋃

h∈H hMh−1. Left multiplication gives a
transitive action of H on Ω = H/M. Note that an element x ∈ H fixes a coset hM ∈ H/M if and only if
x ∈ hMh−1. So an element x ∈ H is a derangement on Ω if and only if it does not lie in C. In particular, for
any S-coset κ in H, we have δ(κ, Ω) = 1− |C ∩ κ|/|S|.

Similarly, we could reformulate Proposition 7.1 in terms of derangements.
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7.2. Proof of Proposition 7.1. Since G◦ is a connected and adjoint, we have G◦ = ∏n
i=1 Gi, where the Gi

are connected, adjoint and simple groups defined over F`. We have S = S1 × · · · × Sn, where Si is the
commutator subgroup of Gi(F`).

By excluding a finite number of primes ` that depend only on r and m, we may assume that all the
groups Si are non-abelian and simple and that ` > m. Since Si contains an element of order `, we have
|Si| ≥ ` > m ≥ [H : H0]. Note that the proposition holds for the finite number of excluded primes by
increasing the implicit constant.

Lemma 7.4. The natural map M ∩ S→ S/(S ∩ Hg) is surjective.

Proof. We claim that Si is not isomorphic to a composition factor of M/(M ∩ S) for any 1 ≤ i ≤ n. Take any
1 ≤ i ≤ n. To prove the claim it suffices to show that neither of the groups M/(M∩ H0) or (M∩ H0)/(M∩
S) have a composition factor isomorphic to Si; note that H0 is a normal subgroup of H that contains S.
The group Si is not a composition factor of M/(M ∩ H0) since [M : M ∩ H0] ≤ [H : H0] ≤ m < |Si|.
The group Si is not a composition factor of (M ∩ H0)/(M ∩ S) since we have an injective homomorphism
(M ∩ H0)/(M ∩ S) ↪→ H0/S and H0/S is abelian. This proves the claim.

Let B1, . . . , Bm be the composition factors of S/(S∩ Hg) ∼= (SHg)/Hg. Note that each Bj is isomorphic to
some Si.

Let ϕ : M → H/Hg be the quotient homomorphism. We have ϕ(M ∩ S) ⊆ (SHg)/Hg. The groups
B1, . . . , Bm occur, with multiplicity, as composition factors of ϕ(M) since ϕ is surjective by our assump-
tions on M and (SHg)/Hg is normal in H/Hg. By the claim, the group M/(M ∩ S), and hence also
ϕ(M)/ϕ(M ∩ S), has no composition factors isomorphic to any Bi. Therefore, the groups B1, . . . , Bm oc-
cur, with multiplicity, as composition factors of ϕ(M ∩ S). In particular, |ϕ(M ∩ S)| ≥ |B1| · · · |Bm| =
|(SHg)/Hg|. Since ϕ(M ∩ S) ⊆ (SHg)/Hg, this implies that ϕ(M ∩ S) = (SHg)/Hg. The lemma follows by
noting that (SHg)/Hg ∼= S/(S ∩ Hg). �

Define the subgroup M0 := M ∩ H0 of H0 and the subset

C0 :=
⋃

h∈H0

hM0h−1(7.2)

of H0. We have M ∩ S = M0 ∩ S since S is a subgroup of H0. Therefore, M0 6⊇ S. The natural homo-
morphism M0 ∩ S → S/(S ∩ Hg) is surjective by Lemma 7.4. This surjectivity and M0 6⊇ S implies that
S ∩ Hg 6= 1. The following lemma will be used to reduce to a setting where the group G is connected.

Lemma 7.5. Let κ be any coset of Hg in H0 · Hg. Then there is a coset κ0 of S ∩ Hg in H0 such that

(7.3)
|C ∩ κ|
|Hg|

≤ 1− 1
e
+

1
e
· |C0 ∩ κ0|
|S ∩ Hg|

,

where e := [Hg : S ∩ Hg].

Proof. We have κ ∩ H0 6= ∅ since κ is a Hg-coset in H0 · Hg. Therefore, there is a S ∩ Hg-coset κ0 of H0
satisfying κ0 ⊆ κ. Since κ is the disjoint union of e different S ∩ Hg-cosets, one of which is κ0, we have

|C ∩ κ| ≤ (e− 1)|S ∩ Hg|+ |C ∩ κ0| = |Hg| − |S ∩ Hg|+ |C ∩ κ0|,
where the inequality uses the trivial upper bound for the S ∩ Hg-cosets that are not κ0. Dividing by |Hg|,
we deduce that |C ∩ κ|/|Hg| ≤ 1− 1/e + 1/e · |C ∩ κ0|/|S ∩ Hg|. So to prove (7.3), it suffices to show that
C ∩ κ0 = C0 ∩ κ0.

Since κ0 ⊆ H0 and C0 ⊆ H0, it thus suffices to show that C ∩ H0 = C0. Using that M → H/H0 is
surjective, we find that C = ∪h∈H0 hMh−1. Therefore, C ∩ H0 = ∪h∈H0 h(M ∩ H0)h−1 = C0 as desired. �

Proposition 7.6. Take any subgroup M1 of H0 satisfying M1 6⊇ S for which M1 ∩ S → S/(S ∩ Hg) is surjective.
Define the subset C1 :=

⋃
h∈H0

hM1h−1 of H0. Then for any coset κ0 of S ∩ Hg in H0, we have

|C1 ∩ κ0|
|S ∩ Hg|

≤ δ0 + Or(1/`)

with 0 ≤ δ0 < 1 depending only on r.
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Suppose that Proposition 7.6 holds. Take any Hg-coset κ in H0 · Hg. By Lemma 7.5, there is a (S ∩ Hg)-
coset κ0 in H0 such that (7.3) holds. Proposition 7.6, with M1 = M0, implies that |C0 ∩ κ0|/|S ∩ Hg| ≤
δ0 + Or(1/`) holds with a constant 0 ≤ δ0 < 1 depending only on r. From (7.3), we deduce that

|C ∩ κ|
|Hg|

≤ δ + Or(1/`)

with δ := 1− 1/e + δ0/e = 1 + (−1 + δ0)/e. We have 0 ≤ δ < 1 since 0 ≤ δ0 < 1. We have

e ≤ [G(F`) : S] ≤ m · [G◦(F`) : S]�r m.

So δ < 1 depends only on r and m. This completes the proof of Proposition 7.1 assuming Proposition 7.6.

It thus remains to prove Proposition 7.6. Note that the only role that Hg plays in the proposition is
through its subgroup S ∩ Hg, so without loss generality assume that Hg is a normal subgroup of S. Take
any subgroup M1 ⊆ H0 such that M1 6⊇ S and such that M1 ∩ S → S/(S ∩ Hg) = S/Hg is surjective. We
thus have Hg 6= 1. Define C1 :=

⋃
h∈H0

hM1h−1. Since the proposition now only concerns subgroups of
G◦(F`), we may assume without loss of generality that G is connected and hence that H = H0.

Lemma 7.7. It suffices to prove Proposition 7.6 with the additional assumption that the projection homomorphism
M1 ∩ S ↪→ S→ ∏j∈J Sj is surjective for all proper subsets J ⊆ {1, . . . , n}.

Proof. Since M1 6⊇ S, there is a minimal (non-empty) subset I ⊆ {1, . . . , n} for which the projection M1 ∩
S→ ∏i∈I Si is not surjective. Define the projection

ϕ : G(F`)→∏i∈I Gi(F`) = G̃(F`),

where G̃ := ∏i∈I Gi. Define the groups H̃ := ϕ(H), H̃g := ϕ(Hg) and M̃1 := ϕ(M1). The group ϕ(S)
equals S̃ := ∏i∈I Si. By our choice of I, we have M̃1 6⊇ S̃. The natural homomorphism M1 ∩ S → S/Hg is
surjective and hence so is M̃1 ∩ S̃→ S̃/H̃g.

Take any coset κ0 of S ∩ Hg = Hg in H. Define κ̃0 := ϕ(κ0); it is a coset of H̃g in H̃. The map κ0 → κ̃0,
x 7→ ϕ(x) is b-to-1 with b := |Hg|/|H̃g|. Therefore,

(7.4)
|C1 ∩ κ0|
|Hg|

≤ |ϕ(C1) ∩ ϕ(κ0)| · b
|Hg|

=
|ϕ(C1) ∩ κ̃0| · b
|H̃g| · b

=
|C̃1 ∩ κ̃0|
|H̃g|

,

where C̃1 := ∪h∈H̃hM̃1h−1.
The inequality (7.4) shows that is suffices to prove Proposition 7.6 with (G, H, Hg, M1) replaced by

(G̃, H̃, H̃g, M̃1); note that we have already verified the required properties and that the rank of G̃ is at
most the rank of G. By the minimality of our choice of I, the projection M̃1 ∩ S̃ → ∏j∈J Sj is surjective for
each proper subset J ⊆ I. The lemma is now immediate. �

By Lemma 7.7, we may now assume that the projection M1 ∩ S → ∏j∈J Sj is surjective for every proper
subset J ⊆ {1, . . . , n}.

Lemma 7.8. To prove Proposition 7.6, it suffices to assume that n = 1 or that n = 2 and there is a group isomorphism
f : S1 → S2 such that M1 ∩ S = {(s, f (s)) : s ∈ S1}.

Proof. Suppose that n ≥ 3. Then the projection M1 ∩ S→ Si× Sj is surjective for all distinct i, j ∈ {1, . . . , n}.
Since the groups Si have no nontrivial abelian quotients, Lemma 5.2.2 of [Rib76] implies that M1 ∩ S = S.
However, this is a contradiction since M1 6⊇ S by assumption. Therefore, n ≤ 2.

Suppose that n = 2. The projection M1 ∩ S → Si is surjective for i ∈ {1, 2}. Using that M1 6⊇ S and
that the non-abelian groups Si are simple, Goursat’s lemma ([Rib76, Lemma 5.1.1]) implies that M1 ∩ S =
{(s, f (s)) : s ∈ S1} for some group isomorphism f : S1 → S2. �

By Lemma 7.8, we may assume that n ≤ 2.
• First consider the case n = 1. Since Hg is a non-trivial normal subgroup of S = S1 and S1 is simple, we
have Hg = S. Take any coset κ0 of S ∩ Hg = S in H0.
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Since n = 1, the connected and adjoint group G is simple. There is an integer e ≥ 1 and a connected,
geometrically simple and adjoint linear algebraic group G defined over F`e such that G is isomorphic to the
Weil restriction ResF`e /F`

(G), cf. [KMRT98, Theorem 26.8]. Without loss of generality, we may assume that
G = ResF`e /F`

(G) and hence G(F`) = G(F`e). In particular, we can view S as the commutator subgroup of
G(F`e), and H0 and M1 as subgroups of G(F`e).

Define C1 =
⋃

h∈H0
hM1h−1. Let H1 be the subgroup of H0 generated by M1 and S; it is a normal

subgroup of H0. If κ0 ∩ H1 = ∅, then C1 ∩ κ0 = ∅ and the bound of Proposition 7.6 is trivial for the coset
κ0. So we may assume that κ0 is an S-coset in H1. Since M1 → H1/S is surjective, we can replace M1 by
a maximal subgroup of H1; it still will satisfy the conditions of Proposition 7.6 and the set C1 will only get
larger.

Note that the rank of G is at most r. By Theorem 7.2 and Remark 7.3, applied with the algebraic group
G/F`e , we have

|C1 ∩ κ0|
|S ∩ Hg|

=
|C1 ∩ κ0|
|S| = 1− δ(κ0, H1/M1) ≤ 1− δ + Or(1/`)

with a constant 0 < δ ≤ 1 depending only on r. This completes the proof of Proposition 7.6 in the case n = 1.

• Finally, consider the case n = 2. Since Hg 6= 1 is a normal subgroup of S, Hg is equal to {1} × S2, S1× {1}
or S1 × S2. The following lemma allows us to make some further reductions.

Lemma 7.9. It suffices to prove Proposition 7.6 in the case n = 2 with G1 = G2, Hg = S1 × {1} and M1 =
{(g, g) : g ∈ G1(F`)}.

Proof. Using Lemma 7.8, we make an identification S1 = S2 of abstract groups so that M1 ∩ S = {(s, s) : s ∈
S1}. Since the groups Gi are adjoint, we find that conjugation gives a faithful action of Gi(F`) on S1 = S2.
So we may identify Gi(F`) with a subgroup of Aut(S1).

Take any (g1, g2) ∈ M1. Since M1 ∩ S is a normal subgroup of M1, we have g1sg−1
1 = g2sg−1

2 for all
s ∈ S1 = S2. Therefore, g1 and g2 are equal elements of Aut(S1). Therefore, M1 is a subgroup of {(g, g) :
g ∈ G1(F`)}. To prove the claim, there is no harm in increasing M1 to be equal to {(g, g) : g ∈ G1(F`)}; it
also does not contain S = S1 × S2. We may thus assume that G1 = G2.

We have already observed that Hg ∈ {{1} × S2, S1 × {1}, S1 × S2}. By symmetry, we may assume that
Hg is S1×{1} or S1× S2. From our explicit description of M1, the homomorphism M1 ∩ S→ S/(S1×{1})
is surjective. So we may assume that Hg = S1 × {1}; note that the S1 × S2 cosets can be broken up into
S1 × {1}-cosets. �

We finally assume that we are in the setting of Lemma 7.9. Take any coset κ0 of S1 × {1} in G(F`). We
have κ0 = αS1 × {β} for some α, β ∈ G1(F`). Using our explicit description of M1, we have

C1 ∩ κ0 ⊆ {(g, β) : g ∈ G1(F`) is conjugate to β in G1(F`)}.
Therefore, |C1 ∩ κ0| ≤ |G1(F`)|/|Cβ|, where Cβ is the centralizer of β in G1(F`). If β is semisimple in G1,
then it lies in a maximal torus (of rank r) and hence |Cβ| �r `r. If β is not semisimple, then it commutes
with a non-trivial unipotent element of G1(F`) (whose order is a power of `). Therefore,

|C1 ∩ κ0| ≤ |G1(F`)|/|Cβ| �r |G1(F`)|/`�r |S1|/`,

where the last inequality uses that [G1(F`) : S1] can be bounded in terms of r.
We deduce that |C1 ∩ κ0|/|Hg| = |C1 ∩ κ0|/|S1| �r 1/`. This completes our proof of Proposition 7.6.

8. HILBERT IRREDUCIBILITY

Fix an abelian scheme A → U of relative dimension g ≥ 1, where U is a non-empty open subscheme of
Pn

K with n ≥ 1 and K a number field. Take any constant bA as in Theorem 3.1. For each prime ` ≥ bA, we
have ρA,`(π1(U)) ⊇ SA,`(F`)

′. For a prime ` ≥ bA and real x, define the set

B`(x) := {u ∈ U(K) : H(u) ≤ x, ρAu ,`(GalK) 6⊇ SA,`(F`)
′}.

In this section, we will prove the following.
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Theorem 8.1. For each prime ` ≥ bA and x ≥ 2, we have

|B`(x)| �A (`+ 1)3g(2g+1)/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)g(2g+1).

Remark 8.2. In our application, we will use Theorem 8.1 when ` ≤ c(log x)γ for some positive constants c
and γ depending only on A. For such `, we obtain a bound |B`(x)| �A x[K:Q](n+1/2)(log x)γ′ for a constant
γ′.

8.1. A special version of Hilbert irreducibility. We now state a specialized version of Hilbert’s irreducibil-
ity theorem. To ease notation and make it suitable for future use, we keep it separate from our abelian
variety application.

Let K be a number field. Fix a non-empty open subvariety U of Pn
K with n ≥ 1 and a continuous

representation

ρ : π1(U)→ G(F`),

where G is a linear algebraic group defined over F` for which the neutral component G◦ is reductive. Let S
be the commutator subgroup of G◦(F`). Assume further that ρ satisfies ρ(π1(U)) ⊇ S.

For each point u ∈ U(K), we obtain a homomorphism ρu : GalK → G(F`) by specializing ρ at u; it is
uniquely defined up to conjugation by an element of G(F`). Hilbert’s irreducibility theorem implies that
ρu(GalK) ⊇ S for all u ∈ U(K) away from a set of density 0; Theorem 8.3 below gives a quantitative version.

We first define some quantities for which the implicit constant of our theorem depends on. Let U be
the open subscheme of Pn

OK
that is the complement of the Zariski closure of Pn

K − U in Pn
OK

. The OK-
scheme U has generic fiber U. Fix a finite set S of non-zero prime ideals of OK such that ρ arises from a
homomorphism π1(UO) → G(F`), where O is the ring of S`-integers in K and S` is the set of non-zero
prime ideals p of OK that lie in S or divide `.

Let α : π1(U) → G(F`)/G◦(F`) be the homomorphism obtained by composing ρ with the obvious quo-
tient map. Let F ⊆ K be the minimal extension of K for which α(π1(UF)) = α(π1(UK)).

Let Gad be the quotient of G by the center of G◦. The group (Gad)◦ is an adjoint algebraic group over F`.
Denote the rank and dimension of (Gad)◦ by r and d, respectively. Define the index m = [G(F`) : G◦(F`)].

Theorem 8.3. Fix notation and assumptions as above and take any x ≥ 2. There is a constant c, depending only on
r and m, such that if ` ≥ c, then

|{u ∈ U(K) : H(u) ≤ x, ρu(GalK) 6⊇ S}|

�U,F,|S |,r,m (`+ 1)3d/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)d.

8.2. Proof of Theorem 8.3. We assume that ` ≥ c, where c is a constant that depends only on r and m; we
will allow ourselves to appropriately increase c throughout the proof while maintaining the dependencies.

Let Gad be the quotient of G by the center of G◦ and let π : G → Gad be the quotient map. The morphism
π gives rise to homomorphisms G(F`)→ Gad(F`) and S→ Sad, where Sad is the commutator subgroup of
(Gad)◦(F`). Let

ρad : π1(U)→ Gad(F`),

be the representation obtained by composing ρ with π.
Before proceeding, the following lemma gives an alternate description of S and Sad for all sufficiently

large `.

Lemma 8.4. Let G be a connected reductive group over F`. Let H be the derived subgroup of G and let ϕ : Hsc → H
be its simply connected cover. Then G(F`)

′ is perfect and equal to ϕ(Hsc(F`)) for all ` �r 1, where r is the rank of
H.

Proof. Since Hsc is simply connected, it is a product of simply connected and simple groups H1, . . . , Hm.
We know that each group Hi(F`) is perfect for ` � 1 (moreover, the quotient by its center is a non-abelian
simple group). In particular, we may assume that the group Hsc(F`) is perfect. Therefore, ϕ(Hsc(F`)) =
ϕ(Hsc(F`)

′) ⊆ H(F`)
′. The group ϕ(Hsc(F`)) is perfect since Hsc(F`) is perfect.
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Let Y be the kernel of ϕ; it is commutative since the isogeny ϕ is central. The degree of ϕ, and hence
also the cardinality of Y(F`), can be bounded in terms of r. Galois cohomology gives an injective ho-
momorphism H(F`)/ϕ(Hsc(F`)) ↪→ H1(GalF`

, Y(F`)) of groups, so H(F`)/ϕ(Hsc(F`)) is abelian and its
cardinality can be bounded in terms of r. In particular, we have ϕ(Hsc(F`)) ⊇ H(F`)

′.
We thus have ϕ(Hsc(F`)) = H(F`)

′ since we have shown both inclusions and we have seen that
ϕ(Hsc(F`)) is perfect. We clearly have H(F`)

′ ⊆ G(F`)
′ so it suffices to show that G(F`)

′ ⊆ ϕ(Hsc(F`)) for
all `�r 1.

Let G(F`)
+ be the (normal) subgroup of G(F`) generated by its elements of order `. We have G(F`)

+ ⊆
H(F`) since G/H is a torus over F` and hence has no F`-points of order `. We have already shown that
[H(F`) : ϕ(Hsc(F`))] ≤ Cr, where Cr is a constant depending only on r. By taking ` > Cr, we find
that G(F`)

+ ⊆ ϕ(Hsc(F`)). The group G(F`)/G(F`)
+ is abelian by [Pet16, Proposition 1.1] and hence

G(F`)
′ ⊆ G(F`)

+. Therefore, G(F`)
′ ⊆ G(F`)

+ ⊆ ϕ(Hsc(F`)). �

Lemma 8.5. If ` �r 1 and M is a subgroup of G(F`), then S is a subgroup of M if and only if Sad is a subgroup
π(M).

Proof. Let H be the derived subgroup of G◦; it has rank r Let ϕ : Hsc → H be the simply connected cover
of H. Define ϕad := π ◦ ϕ : Hsc → (Gad)◦; it is the simply connected cover of (Gad)◦. By assuming ` is
sufficiently large in terms of r, Lemma 8.4 implies that S = ϕ(Hsc(F`)), Sad = ϕad(Hsc(F`)), and that S
and Sad are perfect. If M is a subgroup of G(F`) containing S, then

π(M) ⊇ π(S) = π(ϕ(Hsc(F`))) = ϕad(Hsc(F`)) = Sad.

Now let M be a subgroup of G(F`) that satisfies π(M) ⊇ Sad. We need to show that M ⊇ S. We have
π−1((Gad)◦) ⊆ G◦, so there is no harm in replacing M by the smaller group M ∩ G◦(F`). In particular,
we may assume that M ⊆ G◦(F`). We have π(M′) = π(M)′ ⊇ (Sad)′ = Sad. So after replacing M by
the smaller group M′, we may further assume that M ⊆ S. We thus have π(M) = Sad since π(S) = Sad.
The homomorphism S π−→ Sad is surjective and its kernel Z lies in the center of G(F`) since π is a central
isogeny, so we have S = M · Z. Taking commutator subgroups, we find that S = S′ = (M · Z)′ = M′. Since
M′ ⊆ M ⊆ S, we deduce that M = S. �

Take any u ∈ U(K). Specializing ρad at u gives a representation ρad
u : GalK → Gad(F`). Up to an

inner automorphism, ρad
u agrees with π ◦ ρu. By suitably increasing the constant c, Lemma 8.5 implies that

ρu(GalK) ⊇ S if and only ρad
u (GalK) ⊇ Sad. So to prove the theorem, we need to bound the cardinality of

the set
{u ∈ U(K) : H(u) ≤ x, ρad

u (GalK) 6⊇ Sad}.
We now show that the assumptions of Theorem 8.3 hold for ρad and relate its basic invariants to those of

ρ. Lemma 8.5 and the assumption ρ(π1(U)) ⊇ S implies that ρad(π1(U)) ⊇ Sad. By our assumption on ρ,
the representation ρad arises from the homomorphism π1(UO) → G(F`)

π−→ Gad(F`), where O is the ring
of S`-integers in K. The quantities r and d associated to ρ and ρad are the same.

There is no harm in replacing G by the algebraic subgroup generated by G◦ and ρ(π1(U)). In par-
ticular, we may assume that G is generated by G◦ and G(F`). From this we find that the natural map
G(F`)/G◦(F`) → Gad(F`)/(Gad)◦(F`) is an isomorphism. Therefore, α, F and m are the same for ρ and
ρad.

It is now clear that proving Theorem 8.3 for ρad will give the desired bound for ρ.

Without loss of generality, we may now assume that the group G◦ is adjoint. Define the subgroups

H := ρ(π1(U)), Hg := ρ(π1(UK)) and H0 := H ∩ G◦(F`)

of G(F`). Let M be the set of subgroups M of H for which M 6⊇ S and for which the quotient maps
M→ H/Hg and M→ H/H0 are surjective.

Lemma 8.6. Take any x ≥ 2. There is a constant c, depending only on r and m, such that if ` ≥ c, then

|{u ∈ U(K) : ρu(GalK) ∈ M}| �U,F,|S |,r,m (`+ 1)3d/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)d.
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Proof. Let L be the minimal extension of K in K for which Hg is the image of π1(UL) under ρ. We have a
natural short exact sequence

1→ Hg → H
ϕ−→ Gal(L/K)→ 1.

Observe that F is the subfield of L that satisfies ϕ−1(Gal(L/F)) = ρ(π1(UF)) = H0 · Hg.
Fix x ≥ 2. Let M̃ be the set of maximal elements ofMwith respect to inclusion. Take any group M ∈ M̃

and define the subset C :=
⋃

h∈H hMh−1 of H. By appropriately increasing the constant c, Proposition 7.1
says that there is a constant 0 ≤ δ < 1, depending only on r and m, such that |C ∩ κ|/|Hg| ≤ δ holds for
every coset κ of Hg in H0 · Hg. By Theorem 6.1, we have

|{u ∈ U(K) : H(u) ≤ x, ρu(GalK) ⊆ C}| �U,F,δ x(n+1/2)[K:Q] log x + |S`|4n+4 + |C|2n+2 · |Hg|4n+4.

Since |S`| ≤ |S |+ [K : Q] and δ depends only on r and m, we deduce that

|{u ∈ U(K) : H(u) ≤ x, ρu(GalK) is conjugate in H to a subgroup of M}|

�U,F,r,m x(n+1/2)[K:Q] log x + |S |4n+4 + |G(F`)|6n+6.

By summing over all M ∈ M̃ and using that the implicit constant depends on m, we have

|{u ∈ U(K) : ρu(GalK) ∈ M}| �U,F,r,m |M̃| ·
(

x(n+1/2)[K:Q] log x + |S |4n+4 + |G◦(F`)|6n+6).
We now bound |M̃|. Take any M ∈ M̃ and define the subgroup H̃ := M · S of G(F`). Observe that M is
a maximal subgroup of H̃ (if not, then it would give rise to a larger group in the setM). By [LPS07], the
group H̃ has at most O(|H̃|3/2) maximal subgroups, where the constant is absolute. Therefore,

|M̃| � |G(F`)|3/2 · |{H̃ : H̃ subgroup of G(F`) containing S}|.

We obtain |M̃| �r,m |G(F`)|3/2 ≤ m · |G◦(F`)|3/2 by using that the order of the quotient group G(F`)/S
can be bounded in terms of r and m. Therefore,

|{u ∈ U(K) : ρu(GalK) ∈ M}| �U,F,r,m |G◦(F`)|3/2(x(n+1/2)[K:Q] log x + |S |4n+4 + |G◦(F`)|6n+6).
The bound in the lemma follows by noting that |G◦(F`)| ≤ (`+ 1)d, cf. [Nor87, Lemma 3.5]. �

Let β : π1(U) → H/H0 be the surjective representation obtained by composing ρ with the obvious quo-
tient map. As usual, we have a specialization βu : Galk → H/H0 for each u ∈ U(k).

Lemma 8.7. We have

|{u ∈ U(K) : H(u) ≤ x, βu(Galk) 6= H/H0}| �U,F,|S |,m x[k:Q](n+1/2) log x + |S |4n+4.

Proof. To ease notation, define Y := H/H0 = β(π1(U)) and its normal subgroup Yg := β(π1(UK)). The
field F is the smallest extension of K in K for which β(π1(UF)) = Yg. The homomorphism β arises from a
continuous homomorphism π1(UO) → Y, where O is the ring of S`-integers (since ρ arises from a repre-
sentation of π1(UO)). By Corollary 6.2, we have

|{u ∈ U(K) : H(u) ≤ x, βu(GalK) 6= Y}| �U,F,|Y| x[K:Q](n+1/2) log x + |S`|4n+4.

The lemma follows by noting that |S`| ≤ |S |+ [K : Q] and |Y| ≤ m. �

Take any u ∈ U(K) for which S is not a subgroup of ρu(GalK). The natural map ρu(GalK) → H/Hg is
always surjective. If βu(GalK) = H/H0 (equivalently, if the natural map ρu(GalK) → H/H0 is surjective),
then we must have ρu(GalK) ∈ M. Therefore, |{u ∈ U(K) : H(u) ≤ x, ρu(GalK) 6⊇ S}| is less than or equal
to

|{u ∈ U(K) : βu(GalK) 6= H/H0}|+ |{u ∈ U(K) : ρu(GalK) ∈ M}|.
The theorem is now a direct consequence of Lemmas 8.6 and 8.7.
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8.3. Proof of Theorem 8.1. Take any prime ` ≥ bA. Corollary 6.2 with our assumption ρA,`(π1(U)) ⊇
SA,`(F`)

′ implies that |B`(x)| �A,` x[K:Q](n+1/2) log x, where the implicit constant depends on `. So during
our proof we may exclude a finite number of primes `.

Define the linear algebraic group G := (GA,`)F`
over F`. By Theorem 3.1(i), G◦ = (G◦A,`)F`

is reductive
with derived subgroup (SA,`)F`

. The rank of G◦ is bounded in terms of g since it is isomorphic to an
algebraic subgroup of GL2g,F`

.
Let S be the commutator subgroup of G◦(F`). By first excluding a finite number of primes, Lemma 8.4

implies that S = G◦(F`)
′ equals SA,`(F`)

′. We have a representation

ρ := ρA,` : π1(U)→ G(F`).

For each u ∈ U(K), specializing ρ at u gives a representation ρu : GalK → G(F`) that is uniquely defined
up to an inner automorphism of G(F`) and agrees with ρAu ,`. In particular, we have

B`(x) = {u ∈ U(K) : H(u) ≤ x, ρu(GalK) 6⊇ S}.
We are thus in the setting of §8.1 and hence we can define U , r, d, m and F as in that section.

Lemma 8.8. There is a finite set S of non-zero prime ideals of OK, not depending on `, such that ρA,` arises from a
homomorphism π1(UO)→ G(F`), where S` is the set of prime ideals of OK that lies in S or divides ` and O is the
ring of S`-integers in K.

Proof. We first “spread out” A. There is an abelian scheme A′ → UO′ , where O′ is the ring of S -integers
in K for some finite set S of nonzero prime ideals of OK such that the fiber over (UO′)K = U is the abelian
scheme A→ U.

Let O be the ring of S`-integers in K, where S` is the set of prime ideals of OK that lie in S or divide
`. Let A be the abelian scheme over UO obtained from A′ by base change. The `-torsion subscheme A[`]
of A can be viewed as locally constant sheaf of Z/`Z-modules on UO that is free of rank 2g. The fiber of
A[`] over U = (UO)K is A[`]. Since ρ = ρA,` is the representation associated to A[`], we find that ρ arises
via base change from a representation of π1(UO). �

Let S be a set of prime ideals as in Lemma 8.8. We may assume that S is chosen so that |S | is minimal
and hence |S | �A 1.

Lemma 8.9. As the prime ` ≥ bA varies, there are only finitely many possibilities for F, r and m.

Proof. Let α : π1(U) → G(F`)/G◦(F`) be the homomorphism obtained by composing ρ with the obvious
quotient map. The field F ⊆ K is the minimal extension of K for which α(π1(UF)) = α(π1(UK)).

Using that GA,` is the Zariski closure of a subset of GA,`(Z`), we find that the natural map GA,`(Z`)/G◦A,`(Z`)→
GA,`(Q`)/G◦A,`(Q`) is an isomorphism. Using Hensel’s lemma, we find that the reduction module ` homo-
morphism GA,`(Z`)/G◦A,`(Z`) → G(F`)/G◦(F`) is surjective. Therefore, α can be obtained by composing
the homomorphism γA,` of §2.2 with a surjective homomorphism GA,`(Q`)/G◦A,`(Q`) → G(F`)/G◦(F`).
In particular, m is at most [GA,`(Q`) : G◦A,`(Q`)] which is independent of ` by Lemma 2.4(i). The field F is
contained in the minimal extension F′ ⊆ K of K for which γA,`(π1(UF′)) = γA,`(π1(UK)). By Lemma 2.4(i),
F′ is independent of ` and hence there are only finitely many possibilities for F. We can bound r in terms of
the rank of G◦ which we have already noted can be bounded in terms of g. �

Take any x ≥ 2. After first excluding a finite number of primes `, Theorem 8.3 implies that

|B`(x)| = |{u ∈ U(K) : H(u) ≤ x, ρu(GalK) 6⊇ S}|

�U,F,|S |,r,m (`+ 1)3d/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)d.

By Lemma 8.9 and |S | �A 1, we have

|B`(x)| �A (`+ 1)3d/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)d.

It remains to bound d. By choosing a polarization of A and combining with the Weil pairing on the
`-torsion of A, we find that G is isomorphic to an algebraic subgroup of GSp2g,F`

by taking ` sufficiently
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large. Since d is equal to the dimension of the derived subgroup of G◦ it is at most dim Sp2g,F`
= g(2g + 1)

and hence
|B`(x)| �A (`+ 1)3g(2g+1)/2 · x[K:Q](n+1/2) log x + (`+ 1)(6n+15/2)g(2g+1).

9. PROOF OF THEOREM 1.1

Take any constant bA as in Theorem 3.1 and define the set

B := {u ∈ U(K) : ρAu ,`(GalK) 6⊇ SA,`(F`)
′ for some prime ` ≥ bA}.

To prove the theorem, it suffices by Proposition 5.1 to show that B has density 0.

Take any real number x ≥ 2. We now define some finite sets that we will use to study B. Let r be the
common rank of the groups G◦A,`, cf. Proposition 2.5(ii). Fix a b > 0 for whichOK has a prime ideal of norm
at most b log 2.

• Let B(x) be the set of u ∈ B for which H(u) ≤ x.
• For a prime `, let B`(x) be the set of u ∈ U(K) with H(u) ≤ x satisfying ρAu ,`(GalK) 6⊇ SA,`(F`)

′.
• Let R(x) be the set of u ∈ U(K) with H(u) ≤ x such that GAu ,` 6= GA,` for some prime `.
• Let T(x) be the set of u ∈ U(K) with H(u) ≤ x such that for any non-zero prime ideal p of OK sat-

isfying N(p) ≤ b log x, the abelian variety Au has bad reduction at p or the roots of the polynomial
PAu ,p in C× generate a group that is not isomorphic to Zr.

Lemma 9.1. Take any u ∈ U(K) with H(u) ≤ x satisfying u /∈ R(x) ∪ T(x). There are positive constants γ and
c, with γ depending only on g and c depending only on K and g, such that if ` ≥ c(max{[K : Q], h(Au), log x})γ,
then ρAu ,`(GalK) ⊇ SA,`(F`)

′.

Proof. Since u /∈ T(x), there is a non-zero prime ideal q of OK satisfying N(q) ≤ b log x for which Au has
good reduction at q and for which the subgroup ΦAu ,q of C× generated by the roots of PAu ,q is isomorphic
to Zr. This uses our choice of b and x ≥ 2. By Theorem 3.3 and Theorem 3.1(ii), we have ρAu ,`(GalK) ⊇
SAu ,`(F`)

′ for all primes

` ≥ c ·max({[K : Q], h(Au), N(q)})γ,(9.1)

where c and γ are positive constants that depend only on g. Since u /∈ R(x), we have GAu ,` = GA,`. In
particular, we have GAu ,` = GA,` and SAu ,` = SA,`. Therefore, we have ρAu ,`(GalK) ⊇ SA,`(F`)

′ for all
primes ` satisfying (9.1). Finally, since N(q) ≤ b log x, we can replace N(q) by b log x in (9.1) and adjust the
constant c to obtain the lemma. �

We now bound the Faltings height h(Au) in terms of H(u).

Lemma 9.2. We have max{1, h(Au)} �A log H(u) + 1 for all u ∈ U(K).

Proof. We recall some results of Faltings [Fal86]. Let Ag be the coarse moduli space of the moduli stack Ag
of principally polarized abelian varieties of relative dimension g; it is a variety defined over Q. There is an
integer r > 0 for which (ωA/Ag)

⊗r defines a very ample line bundle on Ag, where A → Ag is the universal
abelian variety. Using this line bundle, we will identify Ag with a subvariety of a projective space Pm

Q. Let
Ag be the Zariski closure of Ag in Pm

Z and let M be the induced line bundle O(1) on Ag. In [Fal86, §3],
Faltings defines a hermitian metric ||·|| on the line bundle induced byM on (Ag)C; it gives rise to a height
function h : Ag(K) → R. Choose any hermitian metric ||·||1 on the line bundle induced byM on (Ag)C; it
gives rise to a height function h1 : Ag(K)→ R. For our implicit constants below, we note that the choices of
r,M and ||·||1 depend only on g.

Faltings observes that the metric ||·|| has logarithmic singularities along Ag − Ag, cf. [Fal86, p. 15]. This
implies that

|h(x)− h1(x)| �g log h1(x) + 1

for all x ∈ Ag(K); see the proof of [Fal86, Lemma 3] or [Sil86, Proposition 8.2]. Therefore, we have

max{1, h(x)} �g max{1, h1(x)} �g log H(x) + 1
27



for all x ∈ Ag(K), where H is the usual absolute height on Pm(K).
Consider a semistable abelian variety A defined over K that has a principal polarization ξ (the connected

Néron model of A is a scheme over the ring of integers of K that is semiabelian). Denote by x ∈ Ag(K) the
point on the moduli space corresponding to the pair (A, ξ). Then we have

h(A) = r · h(x) + Og(1);

this is noted in the proof of [Fal86, Theorem 1]. Combining the bounds above, we have

max{1, h(A)} �g log H(x) + 1;

note that this remains true without the semistable hypothesis since both sides are stable under replacing K
by a finite extension.

We finally consider our abelian scheme A → U. First suppose that A → U has a principal polarization
ξ. There is thus a morphism ϕ : U → (Ag)K such that the pair (Au, ξu) represents the point ϕ(u) ∈ Ag(K)
for each u ∈ U(K), where ξu is the specialization of ξ at u. So from above, we find that

max{1, h(Au)} �g log H(ϕ(u)) + 1.

The lemma now follows since log H(ϕ(u)) �ϕ log H(u) + 1 for all u ∈ U(K), where the implicit constant
depends only on the morphism ϕ : U → (Ag)K ⊆ Pm

K , cf. [Ser97, §2.6].
It remains to consider a general A → U that need not have a principal polarization. Define the abelian

scheme B := (A× A∨)4 → U, where A∨ is the dual of A. Using Zarhin’s trick [FWG+92, Ch. IV Propo-
sition 3.8], one finds that the abelian scheme B → U is principally polarized. So by the case of the lemma
already proved, we have max{1, h(Bu)} �A log H(u) + 1 for all u ∈ U(K). The lemma follows since
h(Bu) = 8h(Au) for all u ∈ U(K), cf. the remarks after Propositions 3.7 and 3.8 in Ch. IV of [FWG+92]
(recall we are using the stable Faltings height). �

Take x ≥ 2. Take any u ∈ U(K) satisfying H(u) ≤ x and u /∈ R(x) ∪ T(x). We have max{1, h(Au)} �A
log x by Lemma 9.2. So by Lemma 9.1, there are positive constants c and γ such that ρAu ,`(GalK) ⊇ SA,`(F`)

′

holds for all ` ≥ c(log x)γ, where γ depends only on g and c depends only on A. Therefore,

B(x) ⊆ R(x) ∪ T(x) ∪
⋃

bA≤`≤c(log x)γ

B`(x).

In particular, we have

(9.2) |B(x)| ≤ |R(x)|+ |T(x)|+ ∑
bA≤`≤c(log x)γ

|B`(x)|.

We now bound the terms on the right hand side of (9.2).

9.1. Bounding the sum of the |B`(x)|. Take c and γ as in (9.2). For each prime bA ≤ ` ≤ c(log x)γ,
Theorem 8.1 implies that |B`(x)| �A x[K:Q](n+1/2)(log x)γ′ , where γ′ is a positive constant depending only
on g. Therefore,

∑
bA≤`≤c(log x)γ

|B`(x)| �A x[K:Q](n+1/2)(log x)γ′+γ = o(x[K:Q](n+1)).(9.3)

9.2. Bounding |R(x)|. Let R be the set of u ∈ U(K) such that GAu ,` 6= GA,` for some `. Note that R(x) is
the set of u ∈ R with H(u) ≤ x. The set R has density 0 by Proposition 2.3 and hence

|R(x)| = o(x[K:Q](n+1)).(9.4)

9.3. Bounding |T(x)|. We fix a prime ` ≥ bA. Let U be the open subscheme of Pn
OK

that is the complement
of the Zariski closure of Pn

K −U in Pn
OK

. There is an abelian scheme A → UO , where O is the ring of S -
integers in K for some finite set S of nonzero prime ideals of OK, such that the fiber over (UO)K = U is
our abelian scheme A → U. By increasing S , we may further assume that it contains all prime ideals that
divide ` · |GA,`(Z/`Z)| and that U (Fp) is non-empty for all p /∈ S . There is no harm in replacing U by a
non-empty open subvariety since this only removes a density 0 set of rational points. So after replacing U
and increasing S , we may further assume that UFp is affine and geometrically irreducible for all non-zero
prime ideals p /∈ S of OK.
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For each integer e ≥ 1, the `e-torsion subscheme A[`e] of A can be viewed as locally constant sheaf of
Z/`eZ-modules on U that is free of rank 2g. The fiber of A[`e] over U = (U )K is A[`e]. Since ρA,`e is the
representation associated to A[`e], we find that it arises via base change from a representation of π1(U ).
Combining these representations together appropriately, we obtain a representation $A,` of π1(U ) such
that base change gives rise to our representation ρA,` : π1(U) = π1(UK) → GLV`(A)(Q`). Since $A,` and
ρA,` have the same image, we have $A,` : π1(U )→ GA,`(Z`).

For a non-zero prime ideal p /∈ S ofOK and a point u ∈ U (Fp), letAu be the abelian variety over Fp that
is the fiber ofA over u. Since p - `, we have PAu(x) = det(xI − $A,`(Frobu)), where PAu(x) is the Frobenius
polynomial of Au. Let ΦAu be the subgroup of C× generated by the roots of the Frobenius polynomial
PAu(x).

Lemma 9.3. There is a closed subvariety Y ( G◦A,`, stable under conjugation by GA,`, such that if $A,`(Frobu) ∈
G◦A,`(Q`)−Y(Q`) for a prime ideal p /∈ S of OK and a point u ∈ U (Fp), then ΦAu

∼= Zr.

Proof. This essentially follows from Theorem 1.2 [LP97]; we give a few extra details since this theorem was
only stated for representations of GalK.

Take any prime ideal p /∈ S and u ∈ U (Fp). Let Hu,` be the Zariski closure of the subgroup of GA,`
generated by $A,`(Frobu). The proof of Lemma 1.3(b) of [LP97] shows that there are only finitely many
possibilities for (Hu,`)Q`

up to conjugation by GLV`(A)(Q`) as we vary over all p and u; note that the proof
only uses that $A,`(Frobu) is semisimple along with information about the valuations of the roots of PAu(x).
The end of the proof of Theorem 1.2 [LP97] then shows how to construct a closed subvariety Y ( G◦A,`, stable
under conjugation by GA,`, such that if $A,`(Frobu) ∈ G◦A,`(Q`)−Y(Q`) for a prime ideal p /∈ S of OK and
a point u ∈ U (Fp), then Hu,` is a maximal torus of G◦A,`.

Now suppose that T := Hu,` is a maximal torus of G◦A,`; it remains to show that ΦAu
∼= Zr. Let X(T) be

the group of characters T
Q`
→ Gm,Q`

; it is a free abelian group whose rank is equal to dim T = rankG◦A,` = r.
Define the homomorphism ϕ : X(T) → C×, α 7→ ι(α($A,`(Frobu))), where ι is any embedding of Q` into
C. The homomorphism ϕ is injective since otherwise Hu,` 6= T. Since $A,`(Frobu) is semisimple with
characteristic polynomial PAu(x), we find that the image of ϕ is generated by the roots of PAu(x). Therefore,
we have isomorphisms ΦAu

∼= X(T) ∼= Zr. �

For each non-zero prime ideal p /∈ S of OK, let Dp be the set of u ∈ Pn(Fp) for which u /∈ U (Fp) or for
which ΦAu 6∼= Zr. Define δp := |Dp|/|Pn(Fp)|.
Lemma 9.4. There is a constant 0 ≤ δ < 1 such that δp ≤ δ holds for infinitely many prime ideals p /∈ S of OK.

Proof. Fix an integer e ≥ 1. Take Y as in Lemma 9.3 and define Y = Y(Q`) ∩ GA,`(Z`); it is stable under
conjugation by GA,`(Z`). Let Ye be the image of Y in GA,`(Z/`eZ). Let $A,`e : π1(U ) → GA,`(Z/`eZ) be
the representation obtained by composing $A,` with the reduction map GA,`(Z`)→ GA,`(Z/`eZ).

Define the finite group G := $A,`e(π1(U )) = ρA,`e(π1(U)) ⊆ GA,`(Z/`eZ). Define Gg := $A,`e(π1((UO)K)) =

ρA,`e(π1(UK)); it is a normal subgroup of G. After possibly increasing the finite set S , we may assume that

$A,`e(π1(UFp
)) = Gg

holds for all non-zero prime ideals p /∈ S of OK, see Lemma 6.5.
Take a non-zero prime ideal p /∈ S ofOK. From $A,`e , base change to Fp gives a homomorphism we will

denote by $p : π1(UFp) → G; uniquely defined up to conjugation by G and satisfying $p(π1(UFp
)) = Gg.

Let κp be the unique Gg-coset of G that contains $p(Frobu) for all u ∈ U (Fp). Note that the set Ye ∩ κp is
stable under conjugation by G.

If $p(Frobu) ∈ κp − (Ye ∩ κp) for a point u ∈ U (Fp), then $A,`(Frobu) /∈ Y(Q`) and hence ΦAu
∼= Zr by

Lemma 9.3. Therefore,

{u ∈ U (Fp) : $p(Frobu) ∈ κp − (Ye ∩ κp)} ⊆ Pn(Fp)− Dp.

By Theorem 6.3, this implies that(
1− |Ye ∩ κp|

|Gg|

)
|U (Fp)|+ OA,`e(N(p)n−1/2) ≤ |Pn(Fp)| − |Dp|.
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Dividing by |Pn(Fp)| and using that |Pn(Fp)−U (Fp)| �A N(p)n−1/2, we deduce that

δp ≤
|Ye ∩ κp|
|Gg|

+ OA,`e(N(p)−1/2).(9.5)

Now suppose that Ye ∩ G is a proper subset of G. Then there is a Gg-coset κ0 of G such that Ye ∩ κ0
is a proper subset of κ0. Let C be the conjugacy class of G/Gg that contains the image of κ0. Define the
homomorphism

α : π1(U )
$A,`e
−−→ G → G/Gg.

The homomorphism α factors through GalK; moreover, for u ∈ U (Fp) with p /∈ S , the conjugacy class of
α(Frobu) is represented by the image of κp in G/Gg. By the Chebotarev density theorem, there are infinitely
many p /∈ S for which the image of κp in G/Gg lies in C; now take any such p. The cosets κp and κ0 are
conjugate in G. Since Ye ∩ G is stable under conjugation by G, we have

|Ye ∩ κp|
|Gg|

=
|Ye ∩ κ0|
|Gg|

< 1,

where the inequality uses our choice of κ0. In particular, |Ye ∩ κp|/|Gg| ≤ 1− 1/|Gg|. After first excluding
a finite number of p, we deduce that δp < 1 by (9.5).

So to prove the lemma, it suffices to show that Ye ∩ G is a proper subset of G. Since Y ( G◦A,`, the variety
Y has dimension at most d − 1, where d := dim G◦A,`. So Y is a p-adic analytic manifold of dimension
at most d − 1 and hence |Ye| �Y `e(d−1), cf. [Ser81, Theéorème 8]. Since ` ≥ bA, GA,` is smooth and
[GA,`(Z`) : ρA,`(π1(U))] �A 1 by Theorem 3.1(i) and (iii). Therefore, [GA,`(Z/`eZ) : ρA,`e(π1(U))] �A 1
and hence |G| �A |GA,`(Z/`eZ)| �A `ed. We have not imposed any conditions on the integer e ≥ 1 yet.
So using |G| �A `ed and |Ye| �Y `e(d−1), we choose e ≥ 1 large enough so that |G| > |Ye| and hence
Ye ∩ G is a proper subset of G. �

By Lemma 9.4, there are infinitely many non-zero prime ideals p1, p2, . . . of OK that are not in S and
satisfy δpi ≤ δ for some 0 ≤ δ < 1. Take any integer m ≥ 1.

Let D be the set of u ∈ Pn(K) for which the image in Pn(Fpi ) under the reduction modulo pi lies in
Dpi for all 1 ≤ i ≤ m. The subset D of Pn(K) has density ∏m

i=1 δpi . Note that if the reduction u of a point
u ∈ U(K) modulo pi lies in Pn(Fpi )− Dpi , then Au = Au has good reduction at pi and ΦAu ,p = ΦAu

∼= Zr.
Therefore, we have T(x) ⊆ D for all sufficiently large x. Since D has density ∏m

i=1 δpi , we deduce that

lim sup
x→+∞

|T(x)|
|{u ∈ Pn(K) : H(u) ≤ x}| ≤

m

∏
i=1

δpi ≤ δm.

Since 0 ≤ δ < 1 and since m ≥ 1 was arbitrary, this implies that limx→+∞ |T(x)|/|{u ∈ Pn(K) : H(u) ≤ x}| =
0. Equivalently, we have

|T(x)| = o(x[K:Q](n+1)).(9.6)

9.4. End of the proof. Using (9.2) with (9.3), (9.4) and (9.6), we deduce that |B(x)| = o(x[K:Q](n+1)) and
hence B has density 0. As already noted, the theorem now follows directly from Proposition 5.1.

10. PROOF OF THEOREM 1.2

After replacing X by a non-empty open subvariety, and restricting A, we may assume that there is an
étale morphism ϕ : X → U, where U is a non-empty open subvariety of Pn

K and n is the dimension of X.

We first consider the special case where ϕ : X → U is a Galois cover. Denote the degree of ϕ by d. Define

B := ResX/U(A),

i.e., the Weil restriction of A along the morphism ϕ; it is an abelian scheme of relative dimension g · d over
U. Note that for any U-scheme S, we have B(S) = A(S×U X).
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Using ϕ, we can identify π1(X) with a normal subgroup of π1(U). Let G be the Galois group of ϕ, i.e.,
the group of automorphisms σ of X such that ϕ ◦ σ = ϕ. For each σ ∈ G, let Aσ be the abelian scheme over
X obtained by composing A→ X with σ−1. Using that ϕ is a Galois cover, we have a natural isomorphism

B×U X = ∏
σ∈G

Aσ(10.1)

of abelian schemes over X and hence an isomorphism ρB|π1(X) = ∏σ∈G ρAσ of representations of π1(X).
For any number field L/K and point x ∈ X(L), taking the fiber of (10.1) above x gives a natural isomor-

phism
Bϕ(x) = ∏

σ∈G
Aσ(x)

of abelian varieties over L; the fiber of Aσ over x is Aσ(x). Therefore, we have an equality ρBϕ(x)
=

∏σ∈G ρAσ(x)
of representations of GalL. By considering specializations, we find that

[ρB(π1(X)) : ρBϕ(x)
(GalL)] =

[
(∏

σ∈G
ρAσ

)(π1(X)) : (∏
σ∈G

ρAσ(x)
)(GalL)

]
.

Therefore, [ρA(π1(X)) : ρAx (GalL)] ≤ [ρB(π1(X)) : ρBϕ(x)
(GalL)] ≤ [ρB(π1(U)) : ρBϕ(x)

(GalL)].
By Theorem 1.1, there is a constant C such that [ρB(π1(U)) : ρBu(GalK)] ≤ C holds for infinitely many

u ∈ U(K). Take any such u ∈ U(K). There is a field L/K with [L : K] ≤ d and a point x ∈ X(L) such that
ϕ(x) = u. Therefore,

[ρA(π1(X)) : ρAx (GalL)] ≤ [ρB(π1(U)) : ρBϕ(x)
(GalL)] ≤ [ρB(π1(U)) : ρBu(GalK)] · [L : K] ≤ C · d.

This proves that [ρA(π1(X)) : ρAx̃ (Galk(x̃))] ≤ C · d and [k(x̃) : K] ≤ d, where x̃ is the closed point of X
corresponding to x (one can identify x̃ with the GalK-orbit of x in X(K)). There are infinitely many such
closed points x̃ since we have infinitely many u ∈ U(K) for which [ρB(π1(U)) : ρBu(GalK)] ≤ C. This
completes the proof in the case where ϕ is a Galois cover.

We now consider the general case. There is an étale morphism ψ : X′ → X such that its composition
with ϕ gives a Galois cover ϕ′ : X′ → U. To prove Theorem 1.2 there is no harm in replacing K by a finite
extension K′ and A by its base change over XK′ . So without loss of generality, we may assume that X′ is a
geometrically irreducible variety defined over K.

Let A′ → X′ be the base change of A by ψ; it is an abelian scheme over X′. Since ϕ′ is Galois, the case of
Theorem 1.2 already proved shows that there are integers d and C such that [ρA′(π1(X′)) : ρA′

x′
(Galk(x′))] ≤

C holds for infinitely many closed points x′ of X′ satisfying [k(x′) : K] ≤ d. Take any such closed point x′

of X′ and define the closed point x = ϕ(x′) of X. Using ψ, we can view k(x′) as an extension of k(x) of
degree at most deg ψ. In particular, [k(x) : K] ≤ [k(x′) : K] ≤ d. We have an isomorphism Ax between A′x′
as abelian varieties over k(x′). Therefore, we have

[ρA(π1(X′)) : ρAx (Galk(x′))] = [ρA′(π1(X′)) : ρA′
x′
(Galk(x′))].

and hence

[ρA(π1(X)) : ρAx (Galk(x))] ≤ [ρA(π1(X′)) : ρAx (Galk(x′))] · deg ψ

= [ρA′(π1(X′)) : ρA′
x′
(Galk(x′))] · deg ψ

≤ C · deg ψ.

Therefore, [k(x) : k] ≤ d and [ρA(π1(X)) : ρAx (Galk(x))] ≤ C · deg ψ. Finally, there are infinitely many such
closed points x of X since they arose from infinitely many closed points x′ of X′.
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[SGA7.1] Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York,
1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec
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