EXPLICIT CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS
DAVID ZYWINA

ABSTRACT. Let F be a global function field and let F*® be its maximal abelian extension. Following
an approach of D. Hayes, we shall construct a continuous homomorphism p: Gal(F**/F) — Cp,
where Cr is the idele class group of F. Using class field theory, we shall show that our p is an
isomorphism of topological groups whose inverse is the Artin map of F. As a consequence of the
construction of p, we obtain an explicit description of F*. Fix a place co of F, and let A be
the subring of F' consisting of those elements which are regular away from co. We construct p by
combining the Galois action on the torsion points of a suitable Drinfeld A-module with an associated
oo-adic representation studied by J.-K. Yu.

In the memory of David Hayes

1. INTRODUCTION

Let F' be a global field, that is, a finite field extension of either Q or a function field F,,(¢). Fix an
algebraic closure F of F', and let FP be the separable closure of F in F. Class field theory gives a
description of the maximal abelian extension F2P of F'in F*P. Let 0p: Cp — Gal(F??/F) be the
Artin map where CF is the idele class group of F’; see §1.5 for notation and [Tat67] for background
on class field theory. The map 0 is a continuous homomorphism. By taking profinite completions,
we obtain an isomorphism of topological groups:

0p: Cr = Gal(F?/F).

So OF gives a one-to-one correspondence between the finite abelian extensions L of F' in F®P and
the finite index open subgroups of C'r. For a finite abelian extension L/F', the corresponding open
subgroup of CF is the kernel U of the homomorphism

Cp 22, Gal(F*™ /F) — Gal(L/F)

where the second homomorphism is the restriction map o +— o|; (the group U is computable; it
equals N7,/p(Cp) where Np/p: Cp, — Cr is the norm map). However, given an open subgroup U
with finite index in Cp, the Artin map 6p does not explicitly produce the corresponding extension
field L/F (in the sense, that it does not give a concrete set of generators for L over F'; though it
does give enough information to uniquely characterize it). Ezplicit class field theory for F entails
giving constructions for all the abelian extensions of F'. We shall give a construction of F2b for a
global function field F', that at the same time produces the inverse of GF (without referrlng to GF
or class field theory 1tse1f).

1.1. Context. David Hayes [Hay74] provided an explicit class field theory for rational function
fields F' = k(t). He built on and popularized the work of Carlitz from the 1930s [Car38], who had
constructed a large class of abelian extensions using what is now called the Carlitz module (this is
the prototypical Drinfeld module; we will recall the basic definitions concerning Drinfeld modules
in §2). Drinfeld and Hayes have both described explicit class field theory for an arbitrary global
function field F', see [Dri74] and [Hay79]. Both proceed by first choosing a distinguished place oo
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of F', and their constructions give the maximal abelian extension K., of F' that splits completely
at 0o. Drinfeld defines a moduli space of rank 1 Drinfeld (elliptic) modules with level structure
arising from the “finite” places of F' whose spectrum turns out to be K,. Hayes fixes a normalized
Drinfeld module ¢ of rank 1 whose field of definition along with its torsion points can be used to
construct K, (this approach is more favourable for explicit computations).

One approach to computing the full field F2P is to chose a second place oo’ of F, since F2P will
then be the compositum of K., and K,. We wish to give a version of explicit class field theory
that does not require this second unnatural choice. In Drinfeld’s second paper on Drinfeld modules
[Dri77], he achieves exactly this by considering another moduli space of rank 1 Drinfeld modules
but now with additional oo-adic structure. As remarked by Goss in [Gos96, §7.5], it would be very
useful to have a modification of Drinfeld’s construction that can be applied directly to ¢ to give the
full abelian closure 2. We shall do exactly this! J.-K. Yu [Yu03] has studied the additional co-adic
structure introduced by Drinfeld and has teased out the implicit Galois representation occurring
there. Yu’s representation, which may also be defined for higher rank Drinfeld modules, can be
viewed as an analogue of the Sato-Tate law, cf. [Yu03] and [Zyw11].

1.2. Overview. The goal of this paper is to given an explicit construction of the inverse é\p
Moreover, we will construct an isomorphism of topological groups

p: Wb — Cp,

where W2P is the subgroup of Gal(F#/F) that acts on the algebraic closure k of k in FSP as
an integral power of Frobenius map z +— z¢ (we endow Wl‘?b with the weakest topology for which
Gal(F?" /k) is an open subgroup and has its usual profinite topology). The inverse of our p will be
the homomorphism « + @p(a)~! (Theorem 3.5). For an open subgroup U of Cr with finite index,
define the homomorphism

U Wf}b — Cp — Cp /U,

it factors through Gal(Ly/F) where Ly is the field corresponding to U via class field theory.
Everything about p is computable, and in particular one can find generators for L.

In §2, we shall give the required background on Drinfeld modules; in particular, we focus on
normalized Drinfeld modules of rank 1. The representation p will then be defined in §3.3.

The rest of the introduction serves as further motivation and will not be needed later. After
a quick recap of explicit class field for @, we shall describe the abelian extensions of F' = k(t)
constructed by Carlitz which will lead to a characterization of p. We will treat the case F' = k(t)
in more depth in §5 and recover Hayes’ description of k(¢)*" as the compositum of three linearly
disjoint fields.

1.3. The rational numbers. We briefly recall explicit class field theory for Q. For each positive
integer n, let u, be the subgroup of n-torsion points in @X; it is a free Z/nZ-module of rank 1. Let

Xn: Gal(Q*/Q) — (Z/nZ)*
be the representation for which o(¢) = ¢X*(?) for all ¢ € Gal(Q**/Q) and ¢ € u,. By taking the
inverse image over all n, ordered by divisibility, we obtain a continuous and surjective representation
x: Gal(@™/Q) — Z*.
The Kronecker-Weber theorem says that Q" is the cyclotomic extension of Q, and hence x is an
isomorphism of topological groups.
The group Z* x RT can be viewed as a subgroup of AZ, where R™ is the group of positive

elements of R*. The quotient map Z* x RT — Cg is an isomorphism of topological groups, and
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by taking profinite completions we obtain an isomorphism 75 = 7% xR+ = 6@. Composing x
with this map, we have a isomorphism

p: Gal(Q™/Q) = Co.

One can show that the inverse of the Artin map §Q: @@ = Gal(Q*/Q) is simply the map o +
plo)~".

1.4. The rational function field. Let us briefly consider the rational function field F' = k(t)
where k is a finite field with ¢ elements; it is the function field of the projective line IP’}v. Let oo
denote the place of F' that has uniformizer t~'. The subring of F' consisting of functions that are
regular at all places except possibly oo is A = k[t].

Let Endy (G, r) be the ring of k-linear endomorphisms of the additive group scheme G, over F.
More concretely, Endy (G, r) is the ring of polynomials Y, ¢; X7 € F[X] with the usual addition
and the multiplication operation being composition. The Carlitz module is the homomorphism

¢: A — Endg(Gq,r), a — ¢q

of k-algebras for which ¢, = tX + X9. Using the Carlitz module, we can give F*P an interesting
new A-module structure; i.e., for a € A and £ € F5P, we define a - £ := ¢4(§).

For a monic polynomial m € A, let ¢[m] be the m-torsion subgroup of F*°P i.e., the set of £ € F*°P
for which m - £ = 0 (equivalently, the roots of the separable polynomial ¢,, € F[X]). The group
¢[m] is free of rank 1 as an A/(m)-module, and we have a continuous surjective homomorphism

Xm: Gal(F™/F) — (A/(m))*

such that o(¢) = x,,(0) - € for all o € Gal(F*/F) and ¢ € ¢[m]. By taking the inverse image over
all monic m € A, ordered by divisibility, we obtain a surjective continuous representation

x: Gal(F**/F) — A%,

However, unlike the cyclotomic case, the map x is not an isomorphism. The field |J,,, F'(¢[m]) is a
geometric extension of F' that is tamely ramified at oo; in particular, it does not contain extensions
of F' that are wildly ramified at oo or the constant extensions.

Following J.K. Yu, and Drinfeld, we shall define a continuous homomorphism

poc: WEP — F

where F, = k((t™!)) is the completion of F at the place co. We will put off its definition, and
simply note that po can be characterized by the fact that it satisfies poo(Frobp) = p for each
monic irreducible polynomial p of A. The image of ps is thus contained in the open subgroup
Fi = () - (1+ ¢ 'k[t™']) of FX. We can view A% x Fif as an open subgroup of the ideles AX.
We define the continuous homomorphism

Xpoo o
p:W;b—>X P AXXF(;—)CF

where the first map takes o € W2 to (x(0), poo(c)) and the second map is the compositum of the
inclusion map to A} with the quotient map Ay — Chp.

The main result of this paper, for F' = k(t), says that the above homomorphism p: W& — Cp
is an isomorphism of topological groups. Moreover, the inverse of the Artin map 0p: Cp — W}}b is
the homomorphism o + p(o)~!. In particular, observe that p does not depend on our initial choice
of place oo! Taking profinite completions, we obtain an isomorphism p: Gal(F2P/F) = Cp.

After first developing the theory for a general global function field, we will return to the case
F = k(t) in §5 where we will explicitly describe the abelian extension of k(t) arising from puo.
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The constructions for a general global function field F' are more involved; they more closely
resemble the theory of complex multiplication for elliptic curves than the cyclotomic theory. We
first choose a place oo of F'. In place of the Carlitz module, we will consider a suitable rank 1
Drinfeld module ¢. We cannot always take ¢ to be defined over F, but we can choose a model
defined over the maximal abelian extension H, of F' that is unramified at all places and splits
completely at oo (we will actually work with a slightly larger field HX)

1.5. Notation. Throughout this paper, we consider a global function field F' with a fixed place
00. Let A be the subring consisting of those functions that are regular away from co. Denote by k
the field of constants of F' and let ¢ be the cardinality of k.

For each place A of F, let Fy be the completion of F' at X\. Let ordy: Fy — Z be the discrete
valuation corresponding to A and let Oy C F) be its valuation ring. The idele group A} of F is
the subgroup of (ay) € [[, F )\X, where the product is over all places of F', such that «) belongs to
OAX for all but finitely many places A. The group A} is locally compact when endowed with the
weakest topology for which [], O;, with the profinite topology, is an open subgroup. We embed
F* diagonally into A%; it is a discrete subgroup. The idele class group of F' is Cr := A} /F* which
we endow with the quotient topology.

Let m) be the maximal ideal of O). Define the finite field F) = O)/m, whose cardinality we
will denote by N(\). The degree of the place oo is do := [F : k.

Take a place p of F. We denote by Froby, an arbitrary element of Gal(F**?/F) such that for
each finite Galois extension K C F*P® of F' for which p is unramified, Frob, |k is contained in the
(arithmetic) Frobenius conjugacy class of p in Gal(K/F).

Let L be an extension field of k. We fix an algebraic closure L of L and let L*P be the separable
closure of L in L. We shall take k to be the algebraic closure of k in L*°P. Let LP°f be the perfect
closure of L in L. We shall denote the absolute Galois group of L by Galy, := Gal(L*?/L). The
Weil group W, of L is the subgroup of Galy, consisting of those automorphisms o for which there
exists an integer deg(co) that satisfy o(x) = 29" for all z € k. The map deg: Wi — Z is a group
homomorphism with kernel Gal(L**P/Lk). We endow W with the weakest topology for which
Gal(L**P/Lk) is an open subgroup with its usual profinite topology. Let W2 be the image of W7,

under the restriction map Galy, — Gal(L®®/L) where L2 is the maximal abelian extension of L in
Lsep‘

Let L be an extension field of k. We define L[7] be the ring of polynomials in 7 with coefficients
in L that obey the commutation rule 7 -a = a7 for a € L. In particular, note that L[r] will
be non-commutative if L # k. We can identify L[7] with the k-algebra Endy(G,, 1) consisting of
the k-linear endomorphism of the additive group scheme G, 1; identify 7 with the endomorphism
X — X9

Suppose that L is perfect. Let L((77!)) be the skew-field consisting of Laurent series in 77!;
it contains L[r] as a subring (we need L to be perfect so that 7! - a = a/%r is always valid).
Define the valuation ord,-1: L(77') — Z U {+oc} by ord,—1(>_;a;77") = inf{i : a; # 0} and
ord,-1(0) = +o0o. The valuation ring of ord,—1 is L[7~!], i.e., the ring of formal power series in
771 Again note that L(77!)) and L[7~!] are non-commutative if L # k.

For a topological group G, we will denote by G the profinite completion of G. We will always
consider profinite groups, for example Galois groups, with their profinite topology.

Acknowledgements. Thanks to David Goss, Bjorn Poonen and the referee.
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2. BACKGROUND

For an in-depth introduction to Drinfeld modules, see [Dri74, DH87, Gos96]. The introduction
[Hay92] of Hayes and Chapter VII of [Gos96] are particularly relevant to the material of this section.

2.1. Drinfeld modules. Let L be a field extension of k. A Drinfeld module over L is a homomor-
phism ¢: A — L[7], x — ¢, of k-algebras whose image contains a non-constant polynomial. Let
0: L[t] — L be the ring homomorphism that takes a twisted polynomial to its constant term. We
say that ¢ has generic characteristic if the homomorphism do¢: A — L is injective; using this map,
we then obtain an embedding F' — L that we will view as an inclusion.

The ring L[7] is contained in the skew field LPf((7—1)). The map ¢ is injective, so it extends
uniquely to a homomorphism ¢: F < LPf((771). The function v: F — Z U {+oco} defined
by v(x) = ord,-1(¢,) is a discrete valuation that satisfies v(x) < 0 for all non-zero x € A; the
valuation v is non-trivial since the image of ¢ contain a non-constant element of L[r]. Therefore,
v is equivalent to ords, and hence there exists a positive r € Q that satisfies

(2.1) ord,—1(¢;) = rde ordeo ()

for all z € F*. The number r is called the rank of ¢ and it is always an integer.
Since LPf((771)) is complete with respect to ord, -1, the map ¢ extends uniquely to a homo-
morphism
¢: Fog = LP(771)

that satisfies (2.1) for all z € F. This extension of ¢ was first constructed in [Dri77] and will be
the key to the oo-adic part of the construction of the inverse of the Artin map in §3.2. It will also
lead to a more straightforward definition of the “leading coefficient” map g of [Hay92, §6], see
§2.2.

Restricting our extended map ¢ to Fo, gives a homomorphism Fo, — LPef[771]. After composing
$|r.. with the homomorphism LPf[7~1] — LPe which takes a power series in 77! to its constant
term, we obtain a homomorphism F., «— LP®f of k-algebras whose image must lie in L. In
particular, the Drinfeld module ¢ gives L the structure of an F,-algebra.

Fix two Drinfeld modules ¢, ¢': A — L[r]. An isogeny from ¢ to ¢’ over L is a non-zero f € L[7]
for which f¢, = ¢, f for all a € A. An isomorphism from ¢ to ¢’ over L is an f € L[r]* = L™ that
is an isogeny from ¢ to ¢'.

2.2. Normalized Drinfeld modules. Fix a Drinfeld module ¢: A — L|[7] of rank r and also
denote by ¢ its extension Foo — LP((771)). For each x € F, we define ugs(z) € (LP)* to be
the first non-zero coefficient of the Laurent series ¢, € LP((771)). By (2.1), the first term of ¢,
is pug(2)7 7" oo (@) For a non-zero x € A, one can also define ji4(x) as the leading coefficient of
¢, as a polynomial in 7.

For x,y € FX, the value j14(y) is equal to the coefficient of yis(2)7 4o 0o (). (1))~ rdoc ordoc (v)
and hence

. 1/qrdoo ordeo ()

(2:2) po(xy) = ho(x)pe(y) :
With respect to our embedding Fo, < L arising from ¢, we have py(z) = « for all x € FX.

We say that ¢ is normalized if pg(x) belongs to FX for all z € F (equivalently, for all non-zero
x € A). If ¢ is normalized, then by (2.2) the map pg: F — FX is a group homomorphism that
equals the identity map when restricted to FX ; this is an example of a sign function.

Definition 2.1. A sign function for Fiy is a group homomorphism e¢: F — FX that is the identity
map when restricted to FX . We say that ¢ is e-normalized if it is normalized and pg: F — FX is
equal to € composed with some k-automorphism of Fg.
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A sign function e is trivial on 1+ m, so it determined by the value £(7) for a fixed uniformizer
7w of Fiy.

Lemma 2.2. [Hay92, §12] Let ¢ be a sign function for Fy and let ¢': A — L[r] be a Drinfeld
module. Then ¢ is isomorphic over L to an e-normalized Drinfeld module ¢: A — L[r].

2.3. The action of an ideal on a Drinfeld module. Fix a Drinfeld module ¢: A — L[r]| and
take a non-zero ideal a of A. Let I, 4 be the left ideal in L[7] generated by the set {¢, : a € a}. All
left ideals of L[7] are principal, so I 4 = L[] - ¢4 for a unique monic polynomial ¢, € L[r]. Using
that a is an ideal, we find that I, 43¢, C I for all z € A. Thus for each = € A, there is a unique
polynomial (a * ¢), in L[7| that satisfies

(2’3) ¢a : ¢az = (Cl * ¢)x : Qba-
The map
ax¢: A— L[], x — (ax @),

is also a Drinfeld module, and hence (2.3) shows that ¢, is an isogeny from ¢ to a * ¢.

Lemma 2.3. [Hay92, §4]

(i) Let a and b be non-zero ideals of A. Then ¢pgp = (b * ¢)a- dp and ax (b * @) = (ab) * ¢.
(ii) Let a = wA be a non-zero principal ideal of A. Then ¢q = pg(w)™' - ¢y and (a* @), =
pip(w) ™1 @y - pg(w) for all z € A.

Lemma 2.4. Let o: L — L' be an embedding of fields. Let o(¢): A — L[] be the Drinfeld module
for which o(¢), = o(¢s), where o acts on the coefficients of L|T]. For each non-zero ideal a of A,
we have o(ax ¢) = axo(p) and o(¢a) = 0(P)q.

Proof. The left ideal of L'[7] generated by o(lq,¢) is I 4(¢), and hence o(¢q) = o(¢)a. Applying o
to (2.3), we have

0(¢)a0(@)z = 0(da- dz) = o((a* @)z - pa) = 7(a* ¢)s0()a,
for all x € A. This shows that o(a ¢) = a*o(p). O

2.4. Hayes modules. Fix a sign function € for Fiy,. Let Cw be the completion of an algebraic
closure Fo, of Iy, with respect to the oo-adic norm; it is both complete and algebraically closed.

Definition 2.5. A Hayes module for € is a Drinfeld module ¢: A — Cuo[7] of rank 1 that is e-
normalized and for which 0 o ¢: A — C is the inclusion map. Denote by X, the set of Hayes
modules for €.

We know that Hayes modules exist because Drinfeld A-modules over C., of rank 1 can be
constructed analytically [Dri74, §3] and then we can apply Lemma 2.2."

Take any Hayes module ¢ € X.. Using that ¢4 € Co[7] is monic along with (2.3), we see that the
Drinfeld module a * ¢ also belongs to X.. By Lemma 2.3(i), we find that the group Z of fractional
ideals of A acts on X.. Let PT be the subgroup of principal fractional ideals generated by those
x € F* that satisfy e(x) = 1. The group P acts trivially on X. by Lemma 2.3(ii), and hence
induces an action of the finite group Pic*(A) := Z/P*+ on X..

1n our construction of the inverse of the Artin map, this is the only part that we have not made explicit. It is
analogous to how one analytically constructs an elliptic curve with complex multiplication by the ring of integers Ok
of a quadratic imaginary field K [The quotient C/Ok gives such an elliptic curve over C. We can then compute the
j-invariant to high enough precision to identify what algebraic integer it is (it belongs to the Hilbert class field of K
and we know its degree over QQ).]. The current version of Magma [BCP97] has a function AnalyticDrinfeldModule
that can compute rank 1 Drinfeld modules that are defined over the maximal abelian extension Ha of F that is
unramified at all places and splits completely at co.
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Proposition 2.6. [Hay92, §13] The set X. is a principal homogeneous space for Pict(A) under
the x action.

We now consider the arithmetic of the set X.. Take any ¢ € X. and choose a non-constant
y € A. Let HX be the subfield of C, generated by F' and the coefficients of ¢, as a polynomial in
7. We call HX the normalizing field for the triple (F, 00, ¢).

Lemma 2.7. [Hay92, §14] The extension H}/F is finite and normal, and depends only on the
triple (F,00,¢).

So for every ¢ € X, we have ¢(A) C HX [7]. From now on, we shall view ¢ as a Drinfeld module
¢: A — Hj[r]. By [Hay92, Proposition 11.4], we actually have ¢(A) C B[r] where B is the integral
closure of A in H:{. Since ¢ is normalized, we find that ¢ has good reduction at every place of
HX not lying over oo (for each non-zero prime ideal ‘B of B, we can compose ¢ with a reduction
modulo P map to obtain a Drinfeld module of rank 1 over B/J).

There is thus a natural action of the Galois group Gal(H;/F) on X.. With a fixed ¢ € X,
Proposition 2.6 implies that there is a unique function ¢: Gal(H}/F) — Pic"(A) such that
o(¢) = ¢¥(o)*¢. Lemmas 2.3 and 2.4 imply that 1 is a group homomorphism that does not depend
on the initial choice of ¢. A consequence of following important proposition is that 1 is surjective,
and hence an isomorphism.

Proposition 2.8. The extension HX/F s unramified away from oo. For each non-zero prime
ideal p of A, the class 1(Froby) of Pic™(A) is the one containing p.

3. CONSTRUCTION OF THE INVERSE OF THE ARTIN MAP

Fix a place oo of F. Throughout this section, we also fix a sign function ¢ for F, and a Hayes
module ¢ € X. (as described in the previous section). Let F be the open subgroup of F}
consisting of those x € F for which £(z) = 1. So as not to clutter the construction, all the lemmas
of §3 will be proved in §4.

3.1. A-adic representations. Fix a place A # oo of F'; we shall also denote by A the corresponding
maximal ideal of A. Take any automorphism ¢ € Galp. Since the map v of §2.4 is surjective, we
can choose a non-zero ideal a of A for which o(¢) = a * ¢.

For each positive integer e, let ¢[\°] be the set of b € F' that satisfy ¢,(b) = 0 for all x € \¢;
equivalently, #[\°] is the set of b € F such that ¢ye(b) = 0 (recall that we can identify each element
of L[r] with a unique polynomial 3"..,¢; X9 € L[X]). We have ¢[\¢] C F*P since the polynomials
¢, are separable for all 2 € \¢. Using the A-module structure coming from ¢, we find that ¢[\°] is
an A/A°-module of rank 1. The A-adic Tate module of ¢ is defined to be

T\(¢) = Homa(F)\/Oy, ¢[X*])

where ¢[A®] = Ue>16[A°]. The Tate module T)\(¢) is a free Oy-module of rank 1, and hence
Va(¢) :== F) ®0, Ta(¢) is a one-dimensional vector space over F).

For each e, the map ¢[\¢] — o(¢)[A¢], & — (&) is an isomorphism of A/A°-modules. Combining
over all e, we obtain an isomorphism V) (0): V\(¢) — Vi(c(¢)) of F)\-vector spaces.

The isogeny ¢4 from ¢ to a* ¢ induces a homomorphism ¢[A°] — (a* ¢)[\°] of A/\°-module for
each e. Combining together, we obtain an isomorphism V)(¢q): Va(¢) — Vi(a * ¢) of F)-vector
spaces.

Using our assumption o(¢) = a * ¢, the map Vj(¢q) ! o Vi(0) belongs to Autp, (Va(¢)) = FY;
we denote this element of F\* by p$(o).

Lemma 3.1.



(i) Take 0,7 € Galp and fix ideals a and b of A such that o(¢) = ax ¢ and v(¢) = bx¢p. Then
(07)(¢) = (ab) x ¢ and p§*(oy) = p§(0)p5(7)-
(ii) Take o € Galp and fiz ideals a and b of A such that o(¢) = axd = bxg. Then p§(c)p8(o)~?
is the unique generator w € F* of the fractional ideal ba~! that satisfies e(w) = 1.
(iii) Take o € Galp and fix an ideal a such that o(¢) = a x ¢. Identifying \ with a non-zero
prime ideal of A, let f >0 be the largest power of A dividing a. Then ordy(p$(c)) = —f.

By Lemma 3.1(i), the map
pr: Galps — 05, o pi(o)

is a homomorphism. It is continuous and it is unramified at all places not lying over A or co by the
Drinfeld module analogue of the Néron-Ogg-Shafarevich criterion, cf. [Gos96, Theorem 4.10.5] (as
mentioned after Lemma 2.7, ¢ has good reduction at all places of H:{ not lying over co).

3.2. oo-adic representation. By §2.2, our Drinfeld module ¢: A — H}[r] extends uniquely to
a homomorphism ¢: Foo — (H ;)P ((771)) that satisfies (2.1) with r = 1 for all z € FX. Recall

that we defined a homomorphism deg: Wp — Z for which o(x) equals 24" = pdeg(0) g~ deg(0)
for all z € k. Given a series u € F((7~1)) with coefficients in F*°P and an automorphism o € Gal,
we define o(u) to be the series obtained by applying o to the coefficients of w.

Lemma 3.2.

(i) There exists a series u € F[r7]* such that u '¢p(Fx)u C k(771). Any such u has
coefficients in F5°P,

(ii) Fiz any u as in (i). Take any o € Wr and fix a non-zero ideal a of A for which o(¢) = ax¢.
Then

¢a o (u)!Fu € F(r )
belongs to ¢(F) and is independent of the choice of u.
Take 0 € Wy and fix a non-zero ideal a of A such that o(¢) = ax¢$. Choose a series u € F[r~!]*

as in Lemma 3.2(i). Using that ¢: Fay — (H1)P (7)) is injective and Lemma 3.2(ii), we define
p% (o) to be the unique element of F for which

B(05(0)) = 65 o u)r s,

We now state some results about pS (o); they are analogous to those concerning p$(c) in the
previous section.

Lemma 3.3.

(i) Take o,y € Wg and fix ideals a and b of A such that o(¢) = ax ¢ and v(¢) = b*x ¢p. Then
(07)(¢) = (ab) * ¢, and we have p&(o7y) = pS(0)pSe(7)-
(ii) Take o € W and fiz ideals a and b of A such that o(¢) = ax¢ = bxg. Then pl (0)pS (o)t
is the unique generator w € F* of the fractional ideal ba~! that satisfies e(w) = 1.
Lemma 3.4. The map
poo: Wyt = EL, o pl(o)
1 a continuous homomorphism that is unramified at all places of HX not lying over oo.
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3.3. The inverse of the Artin map. For each ¢ € Wg, fix a non-zero ideal a of A such that
o(¢) = ax¢. By Lemma 3.1(iii), (p$(c0))x is an idele of F. We define p(o) to be the element of the
idele class group Cr that is represented by (p$(c))x. By Lemmas 3.1(ii) and 3.3(ii), we find that
p(0) is independent of the choice of a. Lemmas 3.1(i) and 3.3(i) imply that the map

p: Wrp — Cp
is a group homomorphism. The restriction of p to the finite index open subgroup WHX agrees with

Thes, Ff x H Oy <= Cp

AF00

W+
Hy

where the second homomorphism is obtained by composing the natural inclusion into A} with the
quotient map A; — Cp. Since the representations py are continuous, we deduce that [], px, and
hence p, is continuous. So we may view p as a continuous homomorphism ng — (Cp. By taking
profinite completions, we obtain a continuous homomorphism

p: Gal(F*/F) — Cp.

Recall that the Artin map 0r: Cp — Gal(F®/F) of class field theory gives an isomorphism
0p: Cp = Gal(F?*/F)

of topological groups. Our main result is then the following;:

Theorem 3.5. The map p: Gal(F**/F) — Cr is an isomorphism of topologzcal groups. The
inverse of the isomorphism Gal(F2P/F) — C’F, o+ p(o)~! is the Artin map 9F

Before proving the theorem, we mention the following arithmetic input.

Lemma 3.6. Fiz a place X of F. Let p # X\ oo be a place of F which we identify with the
corresponding non-zero prime ideal of A. Then pK(Frobp) =1.

Proof of Theorem 3.5. Take an open subgroup U of Cr with finite index. Let Ly be the fixed field
in F®P of the kernel of the homomorphism Wf,ib 2 Cp —» Cp /U; this gives an injective group
homomorphism pyr: Gal(Ly/F') — Cr/U. Let Sy be the set of places p of F' for which p = oo or
for which there exists an idele o € A} whose class in Cp does not lie in U and satisfying oy = 1
for A # p and o € OPX. The set Sy is finite since U is open in CF.

Take any place p ¢ Sy. Choose a uniformizer 7, of F}, and let a(p) be the idele of F' that is 7
at the place p and 1 at all other places. Define the idele 3 := (p% (Froby)), - a(p) € Aj. Lemma 3.6
says that By = 1 for all X # p while Lemma 3.1(iii) tells us that ordy(4,) = 0. By our choice of
Sy, the image of # in Cp must lie in U. Therefore, py(Froby) is the coset of Cr/U represented by
a(p)~!. In particular, note that Ly /F is unramified at all p ¢ Sy. The group Cr/U is generated
by the elements a(p) with p ¢ Sy, and hence py is surjective. Therefore py: Gal(Ly/F) — Cp/U
is an isomorphism of groups.

Define the isomorphism 8 : Cr/U — Gal(Ly /F), a — (p; (). For each p ¢ Sy, it takes
the coset containing a(p) to the Frobenius automorphism corresponding to p. Composing the
quotient map Cr — Cp/U with 0y, we find that the resulting homomorphism Cr — Gal(Ly/F)
equals the map o +— Op(a)|r, where 0p: Cp — Gal(F#?/F) is the Artin map of F.

Recall that class field theory gives a one-to-one correspondence between the finite abelian ex-
tensions L of F' and the open subgroups U with finite index in Cr. Let L C F®°P be an arbitrary
finite abelian extension of F'. Class field theory says that L corresponds to the kernel U of the
map Cp — Gal(L/F), a — Op(a)|r. By comparing with the computation above, we deduce that
L = Ly. Since L was an arbitrary finite abelian extension, we deduce that F' ab — =Uy Lu.

9



Taking the inverse limit of the isomorphisms py: Gal(LU J/F) = Cp/U as U varies, we find
that the corresponding homomorphism p: Gal(F**/F) — Cr is an isomorphism (the injectivity
is precisely the statement that F* = (J;; Ly). The inverse of the isomorphism Gal(F?"/F) —

Cr, o — p(c)~! is obtained by combining the homomorphisms 0y : Cp/U = Gal(Ly/F); from
the calculation above, this equals 0. O

Corollary 3.7. The homomorphism p: ng — Cp is an isomorphism of topological groups. The
inverse of the isomorphism Wlilb — Cp, 0+ p(a)~1 is the Artin map Op.

Proof. This follows directly from the theorem. Observe that the natural maps Wliib — W;b =
Gal(F*/F) and Cr — CF from the group to their profinite completion are both injective since F

is a global function field. O
Remark 3.8.
(i) The isomorphism p: W& — Cp depends only on F (and not on our choices of co, ¢, and
¢ € Xe).

(ii) Our proof only requires class field theory to prove that p is injective, i.e., to show that we
have constructed all finite abelian extensions of F'.

4. PROOFS OF THE LEMMAS

4.1. Proof of Lemma 3.1. (i) By Lemma 2.3(i) and 2.4, we have (077)¢ = (ab) * ¢ and o(¢p) =
0(¢)p. By Lemma 2.3(i) and our choice of a, we find that ¢ = (a % @)p - g = 0(P)p¢a = (dp)Pa-

We have o(y(0(€))) = 0(9)o(€) for all € € a($)[X°], 50 Va(0) o Va(de) 0 Va(o)~* and Va (o ()
are the same automorphism of Vy(c(¢)). Therefore,

)
Va(das) ™ 0 Va(07) = Vala) " 0 Va(a(ds)) " 0 Va(o7)
= Va(¢a) "' o (Va(0) 0 Va(gp) © Va(o) ™)~ 0 Va(0m)
= Va(¢a) " 0 Va(0) 0 Va(gp) ' 0 Va(o) ! 0 Va(o)
= (Va(¢a) "' 0 Va(0)) © (Valgp) ' 0 Va(9))-

Thus p§*(0y) = p§ ()3 (7)-

(ii) Since a* ¢ = b * ¢, Lemma 2.6 implies that the fractional ideal ba™" is the identity class in
Pict(A). There are thus non-zero wy, ws € A such that (w1)a = (w2)b and (w;) = e(wz) = 1. In
particular, w := wj /ws is the unique generator of ba~! satisfying e(w) = 1. By Lemma 2.3(ii), we
have (w1) * ¢ = ¢ and @) = duw,. Therefore, by Lemma 2.3(i) we have

Pawr) = (W1) * )a - Pwy) = Paduw, -
Similarly, d)h(wg) = PpPu,, and hence Qady, = PpPu,. Thus

p3(0)p8 ()7 = Va(da) 0 Va(d6) = Va(duy) © Va( ) "

The automorphisms Vi (¢, ) and Vi (¢w,) both belong to Autp, (Va(¢)) = Fy and correspond to
wy and wy, respectively. We conclude that p§(0)p8(c) ™' = wiw, ! = w.

(iii) We view A as both a place of F' and a non-zero prime ideal of A. For each e > f, the kernel
of IA] = 6\, € > 01 (6a(€)) bas cardinality V]| = NV So p§(0)~1 = Va(o ) o Va(6w),
which is an element of Autg, (Va(¢)) = Fy', gives an Oy-module homomorphism T3 (¢) — Th(¢)
whose cokernel has cardinality N(\). Therefore, ordy(p$(c)~!) = f. In particular, we have

ordx(p(0)) = 1.

-1
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4.2. Proof of Lemma 3.2. Fix a non-constant y € A that satisfies e(y) = 1 and define h :=
—ds ordeg(y) > 1. Since ¢ is e-normalized and e(y) = 1, we have ¢, = 7" + Z?;é b;j7J for unique
bj € HZ. We set u =2, a;7~" with a; € F to be determined where ag # 0. Expanding out the
series ¢,u and ut?, we find that Pyu = ur™ holds if and only if

h j
(4.1) a? —a; = — Z bjag+j7h
0<j<h—1,
iti—h>0
holds for all ¢ > 0. We can use the equations (4.1) to recursively solve for ag # 0,a1, a9, .... The

a; belong to F*P since (4.1) is a separable polynomial in a; and the b, belong to HX C F*°P. Let
Ekp be the degree h extension of k in k. The elements of the ring F((7~')) that commute with 7"
are kp((71)). Since 7" belongs to the commutative ring u~'¢(Fi )u, we find that u = ¢(Fu)u is a
subset of kp,((771)). Thus u € F((771))* has coefficients in F*P and satisfies u™1¢(Fuo)u C k(771)).

Recall that ¢ induces an embedding Foo < Lj; this gives inclusions Fo, C k C L. Fix a uniformizer
7 of F. There is a unique homomorphism ¢: F, — k((771)) that satisfies the following conditions:
e ((z) =x for all x € Fo,
o i(m) = 774,
o ord,—1(¢(z)) = doo ordeo(z) for all x € F.
We have ((Fy) = Foo(779<)). Let C be the centralizer of t(Fy) in F((771)). Using that F,, and
7% are in 1(Fy), we find that C = Foo (77%)) = 1(Fxo)-
Take any v € F[r~1]* that satisfies v 1¢(Fo)v C k((771)). By [Yu03, Lemma 2.3], there exist
wy and we € k[771]* such that

wi H(u™ gpu)wr = u(z) = wyt (v dpo)ws
for all 2 € F. So for all 2 € F,, we have (uw1)i(z)(uwy) ™ = ¢p = (vws)e(x)(vws) ™! and hence

(wy o™ty )e(x) (wy o uw ) T = ().

Thus w, "o~ uw; belongs to C' C k((771)), and so v = uw for some w € k[r~1]*.

The coefficients of v thus lie in F*°P since the coefficients of u lie in F*P and w has coefficients
in the perfect field £ C F*°P. This completes the proof of (i). Since w has coefficients in k, we have
o(w) = 798 qy7r—dee(@) and hence

J( ) deg(o -0 uw) deg(o) (uw)—l
u ( ) deg(a)w uw !

Jo
u)( deg(a deg(a)),rdeg(a)w—lu—l
)

(
o
(

o
(’LL 7_deg cr) —1
This proves that ¢;10(u)7deg(”)u*1 is independent of the initial choice of .

We now show that d7 o (u)798( @)y~ belongs to ¢(Fxo). We have seen that ¢(F) is conjugate
to t(Fs) in F((771)) and that ¢(Fy) is its own centralizer in F((7~!)). Therefore, the centralizer
of ¢(Foo) in F(771)) is ¢(Fs). So it suffices to prove that ¢ o (u)798@y =1 commutes with ¢,
for all z € A. Take any x € A. We have o(u"tppu) = 7987 (u pu)T~ 987 since uT g, u has
coefficients in k. By our choice of a, we have 0(¢), = (a* @)z = ¢padrdy . Therefore,

Tdega(uilqb:cu)T? dego — U( ¢1‘ ) = U( ) 1U(¢)xa(u) = U(u)flgbagj)xgj);lo'(u)

and one concludes that ¢ 'o(u)798 7y~ commutes with ¢,.
11



The only thing that remains to be proved is that ¢ o (u)79€u =1 belongs to ¢(FL). Since ¢ is
e-normalized, this is equivalent to showing that the first non-zero coefficient of the Laurent series
qﬁgla(u)rdeg"u*l in 771 is 1. Since ¢4 is a monic polynomial of 7, we need only show that the

— _ dego
first non-zero coefficient of o(u)74%€%u~1 € F((r71)) is 1, i.e., o(ag)ay ? *” = 1. This is true since

— h
ag € k:X; indeed, ag is non-zero and satisfies al — ag = 0 by (4.1).

Remark 4.1. Take any place p # oo of F' and any valuation v: F*? — QU {400} extending ord,.
We have v(b;) > 0 for 0 < j < h (in §2.4, we noted that the coefficients of ¢, are integral over A).
Using (4.1) repeatedly, we find that v(a;) > 0 for all ¢« > 0 (the roots of (4.1), as a polynomial in
a;, differ by a value in k).

For each ¢ > 1, the extension F'(a;)/F(a;—1) is an Artin-Schreier extension. Since the right-hand
side of (4.1) is integral at each place not lying over oo, we deduce that F'(a;)/F(a;—1) is unramified
at all places not lying over oc.

Let L C F*P be the extension of F generated by k and the set {ai}i>0, i.e., the extension of Fk
generated by the coefficients of u. We find that L is unramified at all places of F' away from oo.

4.3. Proof of Lemma 3.3. Fix a series u € F[771]* as in Lemma 3.2(i).
(i) We have ¢(p%(c7)) = ¢goy(u)rd8@y=1 and ¢(pl (7)) = ¢y 'y(u)rdeMu=t. So it suffices
to show that ¢(pS (o)) equals

S(pS(0m) S (1)) = g oV (w)TIETu - ur T 4By (1) T
= g o (7(w)) 79 () o
= G 0(P6)da - 6 o (g 7(w)) T (9 My (w))
We showed in §4.1 that ¢as = 0(¢p)Pa, S0 we need only prove that ¢y to (¢, Ty (u)) 7 (g 1y (u)) ™
and ¢(p% (o)) agree. By Lemma 3.2(ii), it thus suffices to show that (¢ '7(u)) " ¢(Fuo)dy v (u) C
k().

Take any = € F.o. Since u~'¢,u belongs to k(771)), so does v(u~'¢,u). By our choice of b, we
have

Y(u dpu) = y(u) Ty (B)ay(w) = () THb * ¢)py (1) = y(u) T Pty 'y (w),

and hence (¢ '7(u)) " o5 (¢y ' 7(u)) is an element of k(771)).
(ii) First note that

S(p5(0)pSe(0) ™) = dg o (u)TIE ut - ur 40 (u) T gy = oy o
In §4.1, we showed that ¢ l¢p = ¢w1¢;21 where w; and ws belong to A and w = w;/wy is the

unique generator of ba~! satisfying e(w) = 1. Therefore, p?% (c)pl (o) ™! = w as desired.

4.4. Proof of Lemma 3.4. The map po is a homomorphism by Lemma 3.3(i). Fix a series
u=73;50¢7 ' asinLemma 3.2(i). Foro € WHX’ we have 0rdes (poo(0)) = doo 0rd—1(P(peo(0))) =
—doo deg(0o).

So to prove that p. is continuous, we need only show that Gal(F*P /H j{ k) LN O is continuous.
It suffices to show that for each e > 1, the homomorphism

Be: Gal(F*P/Hik) 2% OX — (Ono/mE)"
has open kernel. For each o € Gal(F*P/H [ k), we have ¢(poo(0)) = o(u)u~!. One can check that
Be(0) = 1, equivalently ordes (poc(0) — 1) > e, if and only if ord, -1 (o (u)u™" —=1) = ord, -1 (o (u) —u)
is at least eds. Thus the kernel of 3. is Gal(F*P/L.) where L. is the finite extension of HZI{:

generated by the set {¢; }o<i<ed.,
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It remains to prove that p, is unramified at all places of H:{ not lying over oco. Let L’ be the
subfield of F*P fixed by ker(ps); it is the extension of H{k generated by the set {c;};>0. The
field L’ does not depend on the choice of u, since ps, does not. In Remark 4.1, we saw that the
extension L of Fk generated by the coefficients of a particular u was unramified at all places of F'
away from oo. Therefore, L’ is unramified at all places of F' away from oo, since L and HX both
have this property.

4.5. Proof of Lemma 3.6. First consider the case A # oco. For each e > 1, we have Frob,(§) =
¢p(§) for all & € ¢[A°] C F®P; this was observed by Hayes [Hay92, p.28], for a proof see [Gos96,
§7.5]. Thus the map Vi (¢p): Va(¢) — Va(¢) equals Vy(Froby), and hence pf (Froby,) = Vi (¢y) ! o
Vi(Froby) = 1.

We may now assume that A = co. Let Fy be an algebraic closure of F,. The field F, has a
unique place extending the p-adic place of F}, and let Oy C F, be the corresponding valuation ring.
The residue field of 6p is an algebraic closure of F, that we denote by E,, and let rp: 5p — Fp be
the reduction homomorphism.

Choose an embedding F' < F,. The restriction map Gal(F,/F,) — Gal(F/F) is an inclusion
that is well defined up to conjugation. So after conjugating, we may assume that Frob, lies in
Gal(Fy/F,); it thus acts on Op and we have ry(Froby(¢)) = r,(€)N®) for all ¢ € O,. We will also
denote by rp, the map Op((771)) — Fy((771)) where one reduces the coefficients of the series.

In §2.4, we noted that the coefficients of ¢, are integral over A for each x € A. This implies that
#(A) C Oypl7]. Define the homomorphism

$: AL Oylr] 2 Fylr).

The map ¢ is a Drinfeld module over Fy, of rank 1 since ¢ is normalized. Since ¢ is normalized,
we find that ¢, € Op(771)* for all non-zero z € A. Therefore, ¢(F) C Op((7~')). Using that
Op((771)) is complete with respect to ord.-1 and that (2.1) holds with r = 1, we deduce that
6(Fe) C Op((r 1)) ) )

We claim that 7, induces an isomorphism ¢(Fs) — ¢(F). Since ¢ is a Drinfeld module,
and hence injective, the map ry induces an isomorphism ¢(A) — ¢(A) which then extends to
an isomorphism ¢(F) — ¢(F) of their quotient fields. The map 7,: ¢(F) — ¢(F) preserves the
valuation ord, -1 so by the uniqueness of completions, r, also gives an isomorphism ¢(Fuao) — ¢(Fuo).

Thus to prove that ph (Froby) equals 1, it suffices to show that (¢ (ph (Froby))) = 1. Lemma 3.2(i),
along with Remark 4.1, shows that there is a series u € Op[71]* with coefficients in F*P such
that u=té(Fy)u C k(771)). With such a series u, we have

¢(poc(Froby)) = <Z>;1 Frob,l,(u)Tdu_1

where d = deg(Froby). The polynomial ¢, € F|[r] has coefficients in Op and rp(¢p) = 7% thus ¢, !
belongs to Oy((771)) and rp(gégl) = 779, We have 7(Froby(u)) = 79ry(u)7~¢. Therefore,

rp(¢(poo (Froby))) = rp(y ) rp(Froby(u))réry(u) ™t = 774 7%y (u)7 ™ - 70y (u) ™! = 1.

5. THE RATIONAL FUNCTION FIELD

We return to the rational function field F' = k(t) where k is a finite field with ¢ elements. Using
our constructions, we shall recover the description of F@ given by Hayes in [Hay74]; he expressed
F2b as the compositum of three linearly disjoint fields over F. In particular, we will explain how
two of these fields arise naturally from our representation p.

We define A = k[t]; it is the subring of F' consisting of functions that are regular away from a
unique place oo of F. We have Foo = k, Foo = k(#t71)) and ords: FX — Z is the valuation for
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which ords (t71) = 1. Let e: FX — k* be the unique sign function of Fi, that satisfies e(t7!) = 1.
Those z € FX for which e(z) = 1 form the subgroup Ff := (t)(1 4+t *k[t71]) = ) (1 + ms).

Recall that the Carlitz module is the homomorphism ¢: A — F[71], a +— ¢, of k-algebras for
which ¢; =t + 7. In the notation of §2.4, ¢ is a Hayes module for €. The coefficients of ¢; lie in F',
so the normalizing field H} for (F,00,¢) equals F. We saw that Gal(H} /F) acts transitively on
X., so X. = {¢}.

For each place A of F' (including oo!), we have defined a continuous homomorphism pj : Wﬁib —
FY, o pf(a). The representation py is characterized by the property that

pa(Froby) =p
holds for each monic irreducible polynomial p € A = k[t] not corresponding to A (combine Lem-
mas 3.1(ii), 3.3(ii) and 3.6 to show that pf(Frobp)pE\p) (Froby)~! = pi!(Froby) is the unique generator
w of pA that satisfies e(w) = 1). For X # oo, the representation py has image in 05, so it extends
to a continuous representation Gal(F2?/F) — Of. The image of p lies in F, but is unbounded

(so it does not extend to a Galois representation).
Combining the representations p) together, we obtain a continuous homomorphism

(5.1) [Ior: Wi — FL = ] 0%

A Ao
By composing [], pa with the quotient map A} — Cr, we obtain a continuous homomorphism
p: Wf,ib — CFp. Corollary 3.7 says that p is an isomorphism of topological groups (and that the
inverse of o — p(c)~! is the Artin map ). The quotient map Ff x [Tsoo O — Cp is actually
an isomorphism, so the map (5.1) is also an isomorphism. Taking profinite completions, we obtain
an isomorphism

(5.2) Gal(F™/F) = F x [ 0F = () - (1 +ms) x [] 0%

AF#00 AF00
Using this isomorphism, we can now describe three linearly disjoint abelian extensions of F' whose
compositum is F2P.

5.0.1. Torsion points. The representation x := [], ., p: Gal(F2b/F) — [t OF = AX arises
from the Galois action on the torsion points of ¢ as described in §1.4. The fixed field in F2P of
ker() is the field Ko := Uy, F'(¢[m]) where the union is over all monic polynomials m of A, and
we have an isomorphism Gal(K../F) — A%, The field Ko, which was first given be Carlitz, is a
geometric extension of F' that is tamely ramified at oo.

5.0.2. Extension of constants. Define the homomorphism deg: W2 — Z by o — — orde(peo(0));
this agrees with our usual definition of deg(o) [it is easy to show that ord,-1(¢(pso(0))) equals
ord,—1(79%¢(?)) = —deg(o), and then use (2.1) with 7 = do, = 1]. The map deg thus factors
through W (k(t)/k(t)) = Z, where W (k(t)/k(t)) is the group of o € Gal(k(t)/k(t)) that act on k
as an integral power of q. Of course, k(t)/k(t) is an abelian extension with Gal(k(t)/k(t)) = Z.

5.0.3. Wildly ramified extension. Define the homomorphism
W 14 me, 0 poo(o)/tdesl);

it is well defined since orde(poo(0)) = — deg(o) and since the image of poo is contained in F =
(t)(1 +my). Since 1 + my is compact, this gives rise to a Galois representation

B: Gal(F*®/F) — 1+ mq.
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Let Lo, be the fixed field of ker(3) in F2P. The field Lo, /F is an abelian extension of F' that is
unramified away from oo and is wildly ramified at oo; it is also a geometric extension of F'.

We will now give an explicit description of this field. Define ap = 1 and for ¢ > 1, we recursively
choose a; € F®°P that satisfy the equation

(5.3) ag — Q; = —tai_l.
This gives rise to a chain of field extensions, F' C F(a1) C F(a2) C F(a3) C ---. We claim that
Loo =U; F(ai). B

The construction of ps starts by finding an appropriate series u € F[r with coefficients
in FP. Define u 1= ) .o, a;7~" with the a; defined as above. The recursive equations that
the a; satisfy ¢;u = wr (just multiply them out and check!). As shown in §4.2, this implies
that u='¢(Fx)u C k(771). For 0 € W2P, py(o) is then the unique element of FJ for which
B(poo(0)) = o(u)78(@)y =1 where o(u) is obtained by letting o act on the coefficients of u. In par-
ticular, ¢(8(c)) = o(u)u~! for all ¢ € Gal(Lo/F) since Lo, /F is a geometric extension. We find
that 5(o) = 1if and only if o(u) = u, and thus L is the extension of F' generated by the set {a; }i>1.

—1]]><

Using the isomorphism (5.2), we find that F2P is the compositum of the fields K., k(t) and
Lo, and that they are linearly disjoint over F'. This is exactly the description given by Hayes in
[Hay74, §5]; the advantage of our representation p, is that the fields k(¢) and Lo, arise naturally.
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