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Abstract. Fix a nonzero abelian variety A of dimension g defined over a number field K. For each prime `,
the Galois action on the `-power torsion points of A induces a representation ρA,` : GalK → GL2g(Z`). The

`-adic monodromy group of A is the Zariski closure GA,` of the image of ρA,` in GL2g,Q` . The image of ρA,` is
open in GA,`(Q`) with respect to the `-adic topology and hence the index [GA,`(Q`)∩GL2g(Z`) : ρA,`(GalK)]

is finite. We prove that this index can be bounded in terms of g for all ` larger then some constant depending

on certain invariants of A.

1. Introduction

Let A be an abelian variety of dimension g ≥ 1 defined over a number field K. Fix an algebraic closure
K of K and define the absolute Galois group GalK := Gal(K/K).

Take any rational prime `. For each positive integer n, we denote by A[`n] the `n-torsion subgroup of
A(K). The group A[`n] is a free Z/`nZ-module of rank 2g and comes with a natural GalK-action that
respects the group structure. The `-adic Tate module of A is

T`(A) := lim←−
n

A[`n],

where the transition maps A[`n+1] → A[`n] are multiplication by `; it is a free Z`-module of rank 2g. The
induced Galois action on T`(A) can be expressed in terms of a continuous representation

ρA,` : GalK → AutZ`(T`(A)) = GLT`(A)(Z`),

where GLT`(A) is the group scheme over Z` for which GLT`(A)(R) = AutR(T`(A)⊗Z` R) for all Z`-algebras R
with the obvious functoriality. After choosing a basis for T`(A), one could have ρA,` mapping to GL2g(Z`);
it will make our arguments easier not to make such an arbitrary choice.

To study the group ρA,`(GalK), we consider a related algebraic group defined over Q`. Define V`(A) :=
T`(A) ⊗Z` Q`; it is a Q`-vector space of dimension 2g and inherits the Galois action from T`(A). We can
define a group scheme GLV`(A) over Q` as above; it is the generic fiber of GLT`(A). We can view GLT`(A)(Z`),
and hence also ρA,`(GalK), as a subgroup of GLV`(A)(Q`) = AutQ`(V`(A)).

Definition 1.1. The `-adic monodromy group of A is the algebraic group GA,` defined over Q` obtained by
taking the Zariski closure of ρA,`(GalK) in GLV`(A). Let GA,` be the algebraic group over Z` obtained by
taking the Zariski closure of ρA,`(GalK) in GLT`(A).

Note that the group schemes GA,` and GA,` determine each other; GA,` is the generic fiber of GA,` and
GA,` is the Zariski closure of GA,` in GLT`(A).

The group ρA,`(GalK) is open in GA,`(Q`) with respect to the `-adic topology, cf. [Bog80]. In particular,
ρA,`(GalK) is an open, and hence finite index, subgroup of GA,`(Z`) = GA,`(Q`)∩AutZ`(T`(A)). An effective
version would ask for effective bounds for [GA,`(Z`) : ρA,`(GalK)]. As a special case of our work, we will see
that

[GA,`(Z`) : ρA,`(GalK)]�g 1

for all sufficiently large primes `. The notation “�g” indicates that the index can be bounded in terms of
a constant that depends only on g, cf. §1.3. For applications, in particular [Zyw19], we are interested in
describing how large ` needs to be in terms of invariants of A.
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1.1. Some quantities. Before stating our main results, we need to define some quantities that will show
up in the bounds. See §2 for further details and references.

For each prime `, let G◦A,` be the neutral component of GA,`, i.e., the algebraic subgroup of GA,` that is the
connected component of the identity. The algebraic group G◦A,` is reductive and its rank r is independent
of `. Let G◦A,` be the Z`-group subscheme of GA,` that is the Zariski closure of G◦A,`. Let Kconn

A be the

minimal extension of K in K for which ρA,`(GalKconn
A

) ⊆ G◦A,`(Q`). The field Kconn
A is a number field that is

independent of `. The extension Kconn
A /K is unramified at all primes ideals for which A has good reduction

and the degree [Kconn
A : K] can be bounded in terms of g.

Let p be any non-zero prime ideal of OK for which A has good reduction. Denote by PA,p(x) the Frobenius
polynomial of A at p; it is a monic polynomial of degree 2g with integer coefficients. For a prime ` satisfying
p - `, the representation ρA,` is unramified at p and we have

PA,p(x) = det(xI − ρA,`(Frobp)).

Let ΦA,p be the subgroup of C× generated by the roots of PA,p(x). If ΦA,p is a free abelian group, then
it has rank at most r. Moreover, the set of primes p for which ΦA,p is a free abelian group of rank r has
positive density.

Denote by h(A) the (logarithmic absolute semistable) Faltings height of A.

1.2. Main results. We can now state the main theorem of the paper. As before, A is an abelian variety of
dimension g ≥ 1 defined over a number field K. Let q be a non-zero prime ideal of OK for which ΦA,q is a
free abelian group of rank r, where r is the common rank of the reductive groups G◦A,`.

Theorem 1.2. There are positive constants c and γ, depending only on g, such that for any prime ` satisfying

` ≥ c ·max({[K : Q], h(A), N(q)})γ(1.1)

the following hold:

(a) [GA,`(Z`) : ρA,`(GalK)]�g,[K:Q] 1,
(b) if ` is unramified in Kconn

A , then [GA,`(Z`) : ρA,`(GalK)]�g 1.
(c) G◦A,` is a reductive group scheme over Z`,
(d) the commutator subgroups of ρA,`(GalKconn

A
) and G◦A,`(Z`) agree.

Remark 1.3. Building on the work of Serre, Wintenberger proved that parts (c) and (d) of Theorem 1.2 hold
for all primes ` ≥ C with C a constant depending on A, cf. [Win02, §2.1]. Using results of Serre, it is then
easy to show that [GA,`(Z`) : ρA,`(GalK)]�A 1 holds for all `.

In §2.2 of [Win02], Wintenberger discusses how one could make the bound ` ≥ C effective. He mentioned
that it should be possible to consider ` large enough in terms of the Faltings height h(A), a related field K,
the prime ideal q, and the finite set S of prime ideals of OK for which A has bad reduction. We tried to
work this out following Wintenberger’s approach but the dependencies on the set S were not appropriate for
our applications where we vary A in a geometric family.

Note that, except for possibly part (b), the set S of bad primes of A do not occur in our theorem. This
was achieved by using the effective bounds of Masser–Wüstholz (Theorem 2.4) to give a new streamlined
proof. In particular, our proof of (c) and (d) does not require inertia groups which is a key ingredient in the
work of Serre and Wintenberger (for example, see §§3.1–3.3 of [Win02]).

Assuming the Generalized Riemann Hypothesis (GRH) for number fields, we can give a version of Theo-
rem 1.2 that does not involve the prime ideal q. Let D be the product of primes p that ramify in K or are
divisible by a prime ideal for which A has bad reduction.

Theorem 1.4. Suppose that GRH holds. Theorem 1.2 holds with (1.1) replaced by

` ≥ c ·max({[K : Q], h(A), logD})γ ,
where c and γ are positive constants depending only on g.

Remark 1.5. The difficulty with bounding the minimal possible N(q) is that the most natural way to do this
is via the Chebotarev density theorem, and this requires knowledge about the image of a representation ρA,`
(which is the thing we are trying to study in the first place!). Our proof of Theorem 1.4 uses a variant of
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Theorem 1.2 along with an effective version of the Chebotarev density theorem. Unfortunately, unconditional
versions of the Chebotarev density theorem did not produce upper bounds for N(q).

For ` sufficiently large, one can show that T`(A) has a basis over Z` such that, with respect to this basis,
ρA,`(GalK) ⊆ GSp2g(Z`).

Corollary 1.6. Suppose that End(AK) = Z and that there is a non-zero prime ideal q of OK for which A
has good reduction and for which ΦA,q is a free abelian group of rank g+1. Then there are positive constants
c and γ, depending only on g, such that

ρA,`(GalK) = GSp2g(Z`)

holds for all primes ` ≥ c ·max({[K : Q], h(A), N(q)})γ that are unramified in K.

Corollary 1.6 recovers the main result of Lombardo in [Lom15] except that he gives explicit numerical
values of c and γ (he also gives another condition on a prime ideal q that implies ours). In principle our
constants can be made explicit, but working them out in the full generality of Theorem 1.2 would be quite
a chore. Note that Lombardo’s methods are different than ours; he studies the maximal proper subgroups
of GSp2g(F`) and makes use of inertia groups.

Remark 1.7. Suppose that we have ρA,`(GalK) = GSp2g(Z`) for all sufficiently large `. In this case, one can
show that End(AK) = Z and that ΦA,p is a free abelian group of rank g + 1 for all prime ideals p ⊆ OK
away from a set of density 0. This justifies the assumptions of Corollary 1.6.

1.3. Notation. For two real quantities f and g, we write that f �α1,...,αn g if the inequality |f | ≤ C|g|
holds for some positive constant C depending only on α1, . . . , αn. In particular, f � g means that the
implicit constant is absolute. We denote by Oα1,...,αn(g) a quantity f satisfying f �α1,...,αn g.

Fix a number field F . We denote the ring of integers of F by OF . For a non-zero prime ideal p of OF ,
we denote by Fp the p-adic completion of F and let Op be the valuation ring of Fp. The residue field of Op

agrees with Fp := OK/p. For a field F , let F be a fixed algebraic closure of F and define GalF := Gal(F/F ).
For a scheme X over a commutative ring R and a commutative R-algebra S, we denote by XS the base

extension of X by SpecS.
Let M be a free module of finite rank over a commutative ring R. Denote by GLM the R-scheme such

that GLM (S) = AutS(M ⊗R S) for any commutative R-algebra S with the obvious functoriality.
For an algebraic group G over a field F , we denote by G◦ the neutral component of G (i.e., the connected

component of the identity of G); it is an algebraic subgroup of G. For an algebraic group T of multiplicative
type defined over F , let X(T ) be the group of characters TF → Gm,F ; it has a natural GalF -action. If T is

a torus, then the group X(T ) is free abelian whose rank is equal to the dimension of T .
Consider a topological group G. Note that profinite groups, will always be considered with their profinite

topology. The commutator subgroup of G is the closed subgroup generated by the commutators of G; we
denote it by G′.

1.4. Overview. In §2, we recall several fundamental results about the Galois representations ρA,` and their
`-adic monodromy group GA,`. We also state the Mumford–Tate conjecture for A in §2.6 which says that
G◦A,` arises from a certain reductive group defined over Q that is independent of `. In §2.7, we show that it
suffices to prove Theorem 1.2 in the special case where all the groups GA,` are connected.

In §4, we prove parts (c) and (d) of Theorem 1.2. Our new proof makes key use of theorems of Masser–
Wüstholz and Larsen–Pink. Some of the needed group theory is described in §3.

In §5, assuming the `-adic monodromy groups GA,` are connected, we construct abelian representations
βA,` : GalK → Y (Q`)c, where Y is a certain torus over Q and Y (Q`)c is the maximal compact subgroup
of Y (Q`) with respect to the `-adic topology. We show that the image of βA,`(GalK) is open in Y (Q`)c.
Moreover, we show that the index [Y (Q`)c : βA,`(GalK)] can be bounded in terms of g if ` is unramified in
K and in terms of g and [K : Q] otherwise. This bound is key in deducing Theorem 1.2(a) and (b) from
Theorem 1.2(d).

In §6, we complete the proof of Theorem 1.2. In §7 and §8, we prove Theorem 1.4 and Corollary 1.6,
respectively.
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2. Background: `-adic monodromy groups

Fix an abelian variety A of dimension g ≥ 1 defined over a number field K.

2.1. Compatibility. Take any non-zero prime ideal p of OK for which A has good reduction. Denote by Ap

the abelian variety over Fp obtained by reducing A modulo p. There is a unique polynomial PA,p(x) ∈ Z[x]
such that PA,p(n) is the degree of the isogeny n−π for each integer n, where π is the Frobenius endomorphism
of Ap/Fp. The polynomial PA,p(x) is monic of degree 2g. For each rational prime ` for which p - `, the
representation ρA,` is unramified at p and satisfies

det(xI − ρA,`(Frobp)) = PA,p(x).

In the notation of [Ser98], the Galois representations {ρA,`}` form a strictly compatible family.
Note that ρA,`(Frobp) is semisimple in GLV`(A); this can be seen by noting that π acts semisimply on the

`-adic Tate module of Ap. From Weil, we know that all of the roots of PA,p(x) in C have absolute value

N(p)1/2.

2.2. Neutral component. Let G◦A,` be the neutral component of GA,`, i.e., the connected component of
GA,` containing the identity. Define G◦A,` to be the Z`-group subscheme of GA,` that is the Zariski closure of
G◦A,`.

Define Kconn
A to be the subfield of K fixed by the kernel of the homomorphism

GalK
ρA,`−−−→ GA,`(Q`)→ GA,`(Q`)/G◦A,`(Q`).(2.1)

Equivalently, Kconn
A is the smallest extension of K in K that satisfies ρA,`(GalKconn

A
) ⊆ G◦A,`(Q`).

Proposition 2.1.

(i) The field Kconn
A depends only on A, i.e., it is independent of `.

(ii) The degree [Kconn
A : K] can be bounded in terms of g only.

(iii) We have

[GA,`(Z`) : ρA,`(GalK)] = [GA′,`(Z`) : ρA′,`(GalKconn
A

)],

where A′ is the base change of A to Kconn
A .

Proof. Part (i) was proved by Serre [Ser00, 133]; see also [LP97]. From (i), we find that Kconn
A is a subfield

of K(A[`∞]) and hence [Kconn
A : K] divides [K(A[`]) : K]`e` for some integer e`. Since [K(A[`]) : K]

divides |GL2g(F`)|, we deduce that [Kconn
A : K] divides |GL2g(F`)|`e` . Therefore, [Kconn

A : K] must divide
|GL2g(F2)| · |GL2g(F3)| which completes the proof of (ii).

Note that the homomorphism (2.1) is surjective since GA,` is the Zariski closure of ρA,`(GalK). There-
fore, [GA,`(Z`) : G◦A,`(Z`)] = [GA,`(Q`) : G◦A,`(Q`)] = [Kconn

A : K]. Part (iii) follows since [ρA,`(GalK) :

ρA,`(GalKconn
A

)] = [Kconn
A : K]. �

2.3. Tate conjecture. The following, which was conjectured by Tate, is an important result of Faltings,
cf. [Fal86].

Theorem 2.2 (Faltings).

(i) The Q`[GalK ]-module V`(A) is semisimple.
(ii) The natural map End(A)⊗Z Q` ↪→ EndQ`[GalK ](V`(A)) is an isomorphism.

Here are some basic properties of the groups G◦A,`.

Proposition 2.3.

(i) The group G◦A,` is reductive.

(ii) For any number field L containing Kconn
A , the group ρA,`(GalL) is Zariski dense in G◦A,`.

(iii) The commutant of G◦A,` in EndQ`(V`(A)) agrees with End(AK)⊗Z Q`.
(iv) All of the endomorphisms of A over K are defined over Kconn

A , i.e., End(AK) = End(AKconn
A

).
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Proof. Part (i) can be deduced from Theorem 2.2.
Take any number field L ⊇ Kconn

A . We have ρA,`(GalL) ⊆ G◦A,`(Q`), so GAL,` is a finite index subgroup

of G◦A,`. Since G◦A,` is connected, we have GAL,` = G◦A,`. This proves (ii).

From part (ii) and Theorem 2.2(ii), we find that End(AL) ⊗Z Q` is naturally isomorphic to the subring
of EndQ`(V`(A)) that commutes with GAL,` = G◦A,`. Since this holds for all L ⊇ Kconn

A , we deduce that

(2.2) End(AKconn
A

)⊗Z Q` = End(AK)⊗Z Q`.

This proves part (iii). Since End(AK) is a free abelian group and GalKconn
A

acts trivially on End(AK)⊗Z Q`
by (2.2), we deduce that GalKconn

A
acts trivially on End(AK). This proves (iv). �

We will also need the following effective modulo ` version of Faltings’ theorem due to Masser and Wüstholz.
We denote by h(A) the (logarithmic absolute) Faltings height of A obtained after base extending to any
finite extension of K over which A has semistable reduction (see §5 of [Cha86]). In particular, note that
h(AL) = h(A) for any finite extension L/K.

Theorem 2.4 (Masser-Wüstholz). Let L be a finite extension of K. There are positive constants c and γ,
depending only on the dimension of A, such that if ` ≥ c(max{[L : Q], h(A)})γ , then the following hold:

• the F`[GalL]-module A[`] is semisimple,
• the natural map End(AL)⊗Z F` → EndF`[GalL](A[`]) is an isomorphism,
• End(AL)⊗Z F` is a semisimple F`-algebra.

Proof. Since h(A) = h(AL), it suffices to prove the theorem in the special case L = K.
The first two conclusions of the theorem follow from Corollaries 1 and 2 in §1 of [MW95]; see the last

remark of their paper for the stated dependence on K. By Lemmas 2.3 and 5.2 of [MW95], we deduce
End(A) ⊗Z F` is semisimple after suitable increasing c and γ; as before, see the last remark of loc. cit. for
the stated dependence on K. �

2.4. Computing ΦA,p. Fix a non-zero prime ideal p of OK for which A has good reduction. Let ΦA,p be
the subgroup of C× generated by the roots of PA,p(x).

Let π1, . . . , π2g ∈ C be the roots of PA,p(x) with multiplicity. Define the number field L = Q(π1, . . . , π2g).
We have a surjective homomorphism

ϕ : Z2g → ΦA,p, e 7→
2g∏
i=1

πeii .

To compute the group ΦA,p, we need to describe the kernel of ϕ. We first describe the e ∈ Z2g for which
ϕ(e) is a root of unity. For each non-zero prime λ of OL, let vλ : L× � Z be the λ-adic valuation.

Lemma 2.5. Take any e ∈ Z2g. The following are equivalent:

(a) ϕ(e) is a root of unity,

(b)
∑2g
i=1 vλ(πi) · ei = 0 holds for all prime ideals λ|N(p) of OL,

Proof. For a fixed e ∈ Z2g, define α := ϕ(e) =
∏2g
i=1 π

ei
i ∈ L×. Observe that for a non-zero prime λ of OL,

we have vλ(α) =
∑2g
i=1 vλ(πi) · ei. If α is a root of unity, then we have vλ(α) = 0 for all λ. Therefore, (a)

implies (b).
We now assume that (b) holds, i.e., vλ(α) = 0 for all prime ideals λ|N(p) of OL. We need to show that

ϕ(e) is a root of unity.
Take any non-zero prime ideal λ - N(p) of OL. For each πi, we have πiπi = N(p), where πi is the complex

conjugate of πi under any complex embedding. So vλ(πi)+vλ(πi) = 0. Since πi and πi are algebraic integers,
we have vλ(πi) ≥ 0 and vλ(πi) ≥ 0, and hence vλ(πi) = 0. Therefore, vλ(α) = 0. Combing this with our
assumption, we deduce that vλ(α) = 0 for all non-zero prime ideals λ of OL. This implies that α ∈ O×L .

Take any embedding ι : L ↪→ C. From Weil, we know that each ι(πi) has absolute valueN(p)1/2. Therefore,
|ι(α)| = N(p)(e1+···+e2g)/2 for any ι and hence |NL/Q(α)| = N(p)[L:Q] (e1+···+e2g)/2. We have NL/Q(α) = ±1

since α ∈ O×L , so e1 + · · ·+ e2g = 0. Therefore, α has absolute value 1 under any embedding into C. Since α
is a unit in OL with absolute value 1 under any embedding into C, we conclude that α is a root of unity. �
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We now describe how to compute the kernel of ϕ. Let M ⊆ Z2g be the group of e ∈ Z2g for which∑2g
i=1 vλ(πi) · ei = 0 for all prime ideals λ|N(p) of OL. By Lemma 2.5, we have ϕ−1(µL) = M , where µL is

the (finite) group of roots of unity in L×. Define the homomorphism

ϕ|M : M → µL, e 7→
2g∏
i=1

πei .

Computing ϕ on a basis of M , one can then explicitly compute kerϕ = ker(ϕ|M ) ⊆ Z2g.
The following finiteness result will be used multiple times in our proofs.

Proposition 2.6. Let p be a non-zero prime ideal of OK for which A has good reduction. Let π1, . . . , π2g ∈ C
be the roots of PA,p(x) with multiplicity. Let M be the group of e ∈ Z2g for which

∏2g
i=1 π

ei
i = 1. There are

a finite number of subgroups M1, . . . ,Ms of Z2g, depending only on g (and not on A and p), such that M
equals one of the Mi.

Proof. Define the number field L := Q(π1, . . . , π2g). Let N be the group of e ∈ Z2g for which
∏2g
i=1 π

ei
i is a

root of unity. Take any e ∈ Z2g. By Lemma 2.5, we have e ∈ N if and only if
∑2g
i=1 vλ(πi) · ei = 0 holds for

prime ideals λ|` of OL. We have [L : Q] �g 1 since L is the splitting field of a degree 2g polynomial and
hence 0 ≤ vλ(πi) ≤ [L : Q]�g 1. So N is defined in Z2g by a finite number of linear equations with integer
coefficients, where the number of equations and size of the coefficients can be bounded in terms of g. So N
is one of a finite number of subgroups N1, . . . , Nm of Z2g that depend only on g.

The group M is the kernel of N → µL, e→
∏2g
i=1 π

ei
i , where µL is the group of roots of unity in L×. We

have |µL| �g 1 since [L : Q]�g 1. So we have [N : M ] ≤ C for some constant C depending only on g. The
proposition thus holds where M1, . . . ,Ms are the subgroups of N1, . . . , Nm of index at most C. �

2.5. Common rank. The results in this section are due to Serre and details can be found in [LP97]. Fix a
prime ` and denote by r the rank of the reductive group G◦A,`.

Lemma 2.7.

(i) Let p be a non-zero prime ideal of OK for which A has good reduction. If ΦA,p is a free abelian
group, then p splits completely in Kconn

A and ΦA,p has rank at most r.
(ii) There is a set S of prime ideals of OK with density 0 such that ΦA,p is a free abelian group of rank

r for all p /∈ S that split completely in Kconn
A .

Proof. Take any non-zero prime ideal p - ` of OK for which A has good reduction. Let Tp be the Zariski
closure in GA,` of the subgroup generated by the semisimple element tp := ρA,`(Frobp). Note that Tp
is a commutative algebraic subgroup of GA,` and T ◦p is a torus. Let X(Tp) be the group of characters
(Tp)Q` → Gm,Q` .

We claim that the groups X(Tp) and ΦA,p are isomorphic. Let Ω ⊆ X(Tp) be the weights of Tp ⊆ GLV`(A)

acting on V`(A). The set Ω generates X(Tp) since this action is faithful. Since Tp is generated by tp, the

homomorphism f : X(Tp) → Q×` , α 7→ α(tp) is injective. The elements {α(tp) : α ∈ Ω} are the roots of

PA,p(x) in Q` and generate the image of f . Therefore, we have an isomorphism X(Tp)→ ΦA,p, α 7→ τ(α(tp)),

where τ : Q` ↪→ C is a fixed embedding. This proves the claim.
Suppose that ΦA,p is a free abelian group of rank s. From the above claim, X(Tp) is free abelian of rank

s and hence Tp is a torus of rank s. Since Tp is connected, we have Tp ⊆ G◦A,`. We have s ≤ r since G◦A,`
has rank r. We have ρA,`(Frobp) ∈ Tp(Q`) ⊆ G◦A,`(Q`), so p splits completely in Kconn

A since Kconn
A is the

fixed field in K of (2.1). This proves (i) for p - `.
The set of prime ideals p ⊆ OK that split completely in Kconn

A for which Tp is not a maximal torus of G◦A,`
has density 0; this follows from Theorem 1.2 of [LP97] which shows it under the assumption Kconn

A = K.
Part (ii) is a direct consequence of the claim.

Finally, from (ii) we find that r does not depend on the choice of `. Therefore, (i) holds for the primes
p|` that were excluded above. �

Proposition 2.8. The rank r of the reductive group G◦A,` does not depend on the prime `.

Proof. This follows from Lemma 2.7(ii) which gives a characterization of r that does not depend on `. �
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2.6. The Mumford–Tate group. Fix a field embedding K ⊆ C. The homology group V := H1(A(C),Q)
is a vector space of dimension 2g over Q. It is naturally endowed with a Q-Hodge structure of type
{(−1, 0), (0,−1)} and hence a decomposition

V ⊗Q C = H1(A(C),C) = V −1,0 ⊕ V 0,−1

such that V 0,−1 = V −1,0. Let

µ : Gm,C → GLV⊗QC

be the cocharacter such that for each z ∈ C× = Gm(C), µ(z) is the automorphism of V ⊗Q C that is
multiplication by z on V −1,0 and the identity on V 0,−1.

Definition 2.9. The Mumford–Tate group of A is the smallest algebraic subgroup of GLV defined over Q
that contains µ(Gm,C). We will denote the Mumford–Tate group of A by MTA.

The endomorphism ring End(AC) acts on V ; this action preserves the Hodge decomposition, and hence
commutes with µ and thus also MTA. Moreover, the ring End(AC) ⊗Z Q is naturally isomorphic to the
commutant of MTA in EndQ(V ). The group MTA is reductive since the Q-Hodge structure for V is pure

and polarizable. Using our fixed embedding K ⊆ C and Proposition 2.3(iv), we have a natural isomorphism
End(AC)⊗Z Q = End(AKconn

A
)⊗Z Q.

The comparison isomorphism V`(A) ∼= V ⊗Q Q` induces an isomorphism GLV`(A)
∼= GLV,Q` ; we will use

the comparison isomorphism as an identification. The following conjecture says that G◦A,` and (MTA)Q` are

the same algebraic group under the comparison isomorphism, cf. [Ser77, §3].

Conjecture 2.10 (Mumford–Tate conjecture). For each prime `, we have G◦A,` = (MTA)Q` .

The following proposition says that one inclusion of the Mumford–Tate conjecture is known uncondition-
ally, see Deligne’s proof in [DMOS82, I, Prop. 6.2].

Proposition 2.11. For each prime `, we have G◦A,` ⊆ (MTA)Q` .

One consequence of the Mumford–Tate conjecture is the central torus of the reductive group G◦A,` (i.e.,

the neutral component of the center) is independent of `. This has been proved unconditionally.

Proposition 2.12. The central tori of G◦A,` and (MTA)Q` agree for all `.

Proof. See [Vas08, Theorem 1.3.1] or [UY13, Corollary 2.11]. �

2.7. Reduction to the connected case. We now show that to prove our main theorem, we may assume
that all the `-adic monodromy groups are connected.

Lemma 2.13. To prove Theorem 1.2, it suffices to consider the case where all the groups GA,` are connected;
equivalently, Kconn

A = K.

Proof. Assume that Theorem 1.2 holds in the case where all the `-adic monodromy groups are connected.
Define L := Kconn

A and let A′ be the base change of A to L. Note that Kconn
A′ = L. By Proposition 2.1(ii),

we have [L : Q]�g [K : Q]. We also have h(A′) = h(A). The prime ideal q ⊆ OK splits completely in L by
Lemma 2.7(i). Let q′ be a prime ideal of OL that divides q. The natural map Fq → Fq′ is an isomorphism
and in particular N(q) = N(q′). Under this isomorphism, the abelian varieties Aq and A′q′ agree and hence

ΦA′,q′ is also a free abelian group of rank r. The assumption (1.1) thus implies that

` ≥ c ·max({[L : Q], h(A′), N(q′)})γ ,

where c is a possibly larger positive constant that depends only on g. By the assumed connected case of
Theorem 1.2 and Proposition 2.1(iii), we have

[GA,`(Z`) : ρA,`(GalK)] = [GA′,`(Z`) : ρA′,`(GalL)]�g,[L:Q] 1.

Since [L : Q]�g [K : Q], we have [GA,`(Z`) : ρA,`(GalK)]�g,[K:Q] 1. This shows that Theorem 1.2(a) holds
for A/K.
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By the assumed connected case of Theorem 1.2, the group G◦A′,` = GA′,` is reductive. So G◦A,` = GA′,` is

reductive which shows that Theorem 1.2(c) holds for A/K. By the assumed connected case of Theorem 1.2,
we have ρA′,`(GalL)′ = G◦A′,`(Z`)′. Therefore, ρA,`(GalL)′ = G◦A,`(Z`)′ and so Theorem 1.2(d) holds for A/K.

Now assume further that ` is unramified in Kconn
A . So ` is unramified in Kconn

A′ = L = Kconn
A . By the

assumed connected case of Theorem 1.2 and Proposition 2.1(iii), we have

[GA,`(Z`) : ρA,`(GalK)] = [GA′,`(Z`) : ρA′,`(GalL)]�g 1.

Therefore, Theorem 1.2(b) holds for A/K. �

3. Some group theory

We now review group theoretic results of Nori, Larsen and Pink. They will be needed for the proofs in
the next section.

3.1. Nori theory. Fix a positive integer m and a prime ` ≥ m; we will later apply this theory with m = 2g,
where g ≥ 1 is the dimension of our abelian variety.

Fix a subgroup Γ of GLm(F`). Let Γu be the set of elements in Γ of order `; it is also the set of non-trivial
unipotent elements in Γ since ` ≥ m. Let Γ+ be the subgroup of Γ generated by Γu. The group Γ+ is normal
in Γ and the quotient Γ/Γ+ has cardinality relatively prime to `.

For each x ∈ Γu, define the homomorphism

ϕx : Ga → GLm, t 7→ exp(t · log x)

of algebraic groups over F` where we use the truncated series

exp z =
∑m−1

i=0
zi/i! and log z = −

∑m−1

i=1
(1− z)i/i.

To show that ϕx is a homomorphism, note that log x is nilpotent and that exp(y + z) = exp(y) exp(z) for
commuting nilpotent y, z ∈Mm(F`).

Let GΓ be the algebraic subgroup of GLm,F` generated by the groups ϕx(Ga) with x ∈ Γu. The following
theorem says that, for ` sufficiently large, we can recover Γ+ from GΓ.

Theorem 3.1 (Nori). [Nor87, Theorem B] There is a constant c1(m) ≥ 2m− 2, depending only on m, such
that if ` > c1(m) and Γ is a subgroup of GLm(F`), then Γ+ = GΓ(F`)+.

We now consider the case where Γ is a semisimple subgroup of GLm(F`), i.e., the group Γ acts semisimply
on Fm` via the natural action. The following lemma is shown during the proof of Corollary B.4 in [EHK12].

Lemma 3.2. Suppose that ` > c1(m) and that Γ is a semisimple subgroup of GLm(F`). Then Γ+ ⊆ GLm(F`)
is semisimple and GΓ is a semisimple algebraic subgroup of GLm,F` .

For a semisimple algebraic group G defined over F`, let Gsc → G be its simply connected cover.

Lemma 3.3. There is a finite collection {%i : Gi → GLm}i∈I of Z-representations of split simply connected
Chevalley groups and a constant c2(m) ≥ c1(m) such that if ` > c2(m) and Γ ⊆ GLm(F`) is a semisimple
subgroup, then the representation

(Gsc
Γ )F` → (GΓ)F` ↪→ GLm,F`

is isomorphic to the fiber of %i over F` for some i ∈ I.

Proof. This is Theorem B.7 in [EHK12]; by Lemma 3.2, there is no harm in replacing Γ by Γ+. �

Finally consider a subgroup H of GLm(Z`) that is closed in the `-adic topology. Let S be the Zariski
closure of H in GLm,Q` and let S◦ be the connected component of the identity. We define the Nori dimension
of H, which we denote by Ndim(H), to be the dimension of GΓ, where Γ is the image of H in GLm(F`).
The following is a special case of a theorem of Larsen, cf. [Lar10, Theorem 7].

Theorem 3.4 (Larsen). There are constants c3(m) and c4(m), depending only m, such that the following
hold if ` ≥ c3(m).

(i) We have Ndim(H) ≤ dimS.
(ii) If S◦ is semisimple and Ndim(H) = dimS, then [S(Q`) ∩GLm(Z`) : H] ≤ c4(m).
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3.2. A theorem of Larsen and Pink. A classic theorem of Jordan say that every finite subgroup Γ of
GLm(C) has a normal abelian subgroup whose index can be bounded by some constant depending only on
m. Larsen and Pink have given a generalized version that holds for all finite subgroups of GLm(k), where k
is an arbitrary field. The following is [LP11, Theorem 0.2] specialized to the subgroups of GLm(F`).

Theorem 3.5 (Larsen-Pink). Let Γ be a subgroup of GLm(F`). Then there are normal subgroups Γ3 ⊆ Γ2 ⊆
Γ1 of Γ such that the following hold:

(a) [Γ : Γ1] ≤ J(m), where J(m) is a constant depending only on m.
(b) Γ1/Γ2 is a direct product of finite simple groups of Lie type in characteristic `.
(c) Γ2/Γ3 is abelian and its order is relatively prime to `.
(d) Γ3 is an `-group.

4. Proof of Theorem 1.2(c) and (d)

Fix an abelian variety A of dimension g ≥ 1 defined over a number field K. For each prime `, we have a
representation

ρA,` : GalK → GA,`(Z`) ⊆ GLV`(A)(Q`).
By Lemma 2.13, we may assume that all the `-adic monodromy groups GA,` are connected. In particular,
G◦A,` = GA,`.

We can identify the special fiber of the Z`-group scheme GLT`(A) with the F`-group scheme GLA[`]. Denote
by

ρA,` : GalK → GA,`(F`) = GLA[`](F`)
the representation obtain by composing ρA,` with reduction modulo `; equivalently, it describes the natural
Galois action on A[`].

We fix a non-zero prime ideal q ⊆ OK for which ΦA,q is a free abelian group of rank r, where r is the
common rank of the reductive groups G◦A,`. Now consider any prime satisfying

` ≥ c ·max({[K : Q], h(A), N(q)})γ ,
where c ≥ 1 and γ ≥ 1 are positive constants that depend only on g. Throughout this section, we will
repeatedly increase the constants c and γ to make sure that certain condition hold while always maintaining
that they depend only on g. In particular, the statement of all lemmas and propositions may require
increasing c and γ.

4.1. Proof of Theorem 1.2(c). We will make use of the following criterion of Wintenberger.

Lemma 4.1. [Win02, Thérèome 1] Let L be a free Z`-module of rank at most ` and define the Q`-vector
space V := L ⊗Z` Q`. Let G be a reductive group over Q`, G ↪→ GLV a faithful representation and T a
maximal torus of G. Let T and G be the schematic closure of T and G, respectively, in GLL. Suppose further
that T is a torus over Z`. Then G is a smooth group scheme over Z`. If also GF` acts semisimply on L/`L,
then G is a reductive group scheme over Z`.

We will apply Lemma 4.1 with L := T`(A), V := V`(A) and G := GA,` ⊆ GLV`(A). The group G is
connected by assumption and it is reductive by Proposition 2.3(i). Let T be the Zariski closure in GA,` of
the subgroup generated by the semisimple element ρA,`(Frobq). Observe that T is a maximal torus of GA,`
if and only if ΦA,q is a free abelian group whose rank equals the rank of GA,`. Therefore, T is a maximal
torus of GA,` by our choice of q.

Denote by T the Zariski closure of T in GLT`(A); it is a Z`-group scheme. It is straightforward to verify
that T and G := GA,` are also the scheme-theoretic closures of T and GA,`, respectively, in GLT`(A) /Z`.

Lemma 4.2. The group GF` acts semisimply on L/`L = A[`].

Proof. Theorem 2.4 implies (after appropriately increasing c and γ) that A[`] is a semisimple F`[GalK ]-
module and that the commutant R1 of ρA,`(GalK) in EndF`(A[`]) is naturally isomorphic to End(A)⊗Z F`.
Let R2 be the commutant of GF` in EndF`(A[`]).

We have ρA,`(GalK) ⊆ G(F`), so to prove that GF` acts semisimply on A[`], it suffices to show that
R2 = R1. We have R2 ⊆ R1 = End(A) ⊗Z F` since ρA,`(GalK) ⊆ G(F`). To prove the other inclusion, it
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thus suffices to show that GF` and End(A)⊗Z F` commute. This is immediate since G is the Zariski closure
of ρA,`(GalK) and the actions of GalK and End(A) on T`(A) commute. �

By increasing c, we may assume that ` > 2g = rankZ`T`(A). By the criterion of Lemma 4.1, it thus
suffices to show that T is a torus.

Let F be a splitting field of PA,q(x) over Q` and denote by λ1, . . . , λm ∈ F the distinct roots of PA,q(x).
Let R be the valuation ring of the local field F and denote its residue field by F. Define D :=

∏
1≤i<j≤m(λi−

λj)
2 6= 0; it is an integer since PA,q(x) has coefficients in Z. Since the roots of PA,q(x) have absolute value

N(q)1/2 under any embedding F ↪→ C, we find that |D| < cN(q)γ after increasing c and γ appropriately. If
q divides `, then ` ≤ N(q). So by increasing c and γ appropriately, we may assume that q - ` and D 6≡ 0
(mod `). This implies that F/Q` is an unramified extension.

Since SpecR → SpecZ` is faithfully flat, it suffices to prove that TR is a torus. To show this we will use
the following lemma.

Lemma 4.3. Take any matrix B ∈ GL2g(R) that is semisimple in GL2g,F and has characteristic polynomial
PA,q(x). Then the Zariski closure in GL2g,R of the subgroup generated by B is a split torus over R.

Proof. Take any 1 ≤ i ≤ m. Let Li be the R-submodule of R2g consisting of those v ∈ R2g that satisfy
Bv = λiv. Since B is semisimple, it acts on Li as multiplication by λi. Let di be the rank of the R-module
Li. By the assumption of the lemma, B is diagonalizable in GL2g(F ) and hence F 2g = ⊕mi=1Li ⊗R F . In
particular, we have 2g =

∑m
i=1 di by taking dimensions.

Let ϕ : R2g → F2g be the reduction map. For each 1 ≤ i ≤ m, define the F-vector space Vi := ϕ(Li).
We claim that dimF Vi = di. By the structure theorem for finitely generated modules over a PID, there is

a basis e1, . . . , e2g of the R-module R2g such that

Li = Rπa1 · e1 ⊕ · · · ⊕Rπadi · edi
with integers aj ≥ 0, where π is a uniformizer of R. Note that if πab is in Li for some b ∈ R2g and a ≥ 0,
then we have b ∈ Li. Therefore, a1 = · · · = adi = 0. The claim follows since we find that Vi = ϕ(Li) is a
vector space over F with basis ϕ(e1), . . . , ϕ(edi).

Let B ∈ GL2g(F) be the reduction of B. The matrix B acts on Vi as scalar multiplication by λi, where λi
is the image of λi in F (we have λi ∈ R since it is a root of the monic polynomial PA,q(x) ∈ Z[x]). For distinct

1 ≤ i < j ≤ m, we have λi 6= λj since otherwise the image of D =
∏

1≤i<j≤m(λi − λj)2 in F is 0 which

contradicts that ` - D. Since λ1, . . . , λm are distinct eigenvalues of B and
∑m
i=1 dimF Vi =

∑m
i=1 di = 2g, we

deduce that ⊕mi=1Vi = F2g. Therefore, ϕ(⊕mi=1Li) = F2g. By Nakayama’s lemma, we have ⊕mi=1Li = R2g.
Therefore, B is conjugate in GL2(R) to a diagonal matrix.

So without loss of generality, we may assume that B is a diagonal matrix. In particular, we can view B as
an R-point of the diagonal subgroup G2g

m,R of GL2g,R. Let T be the Zariski closure in G2g
m,R of the subgroup

generated by B. The fiber TF is a torus of rank r since the eigenvalues in F× of B generate a free abelian
group of rank r (this uses that the characteristic polynomial of B is PA,q(x) and our choice of q). There is

thus a set of equations of the form
∏2g
i=1 x

ai
i = 1, with integers ai, that cut out TF in G2g

m,F . These equations

thus define T and hence it is a subtorus of G2g
m,R. �

We now complete the proof by verifying that TR is a torus. Set B := ρA,`(Frobq); it semisimple and
has characteristic polynomial PA,q(x). From our choice of q, the Zariski closure in GLV`(A) of the group
generated by B is a maximal torus of GA,`. The group TR is the Zariski closure in (GLT`(A))R = GLT`(A)⊗Z`R

of the group generated by B. By choosing an R-basis of T`(A)⊗Z` R, Lemma 4.3 implies that TR is a torus.

4.2. The reductive group HA,` of Serre. Recall that GA,` is reductive by §4.1. Let CA,` be the central
torus GA,` and denote by CA,` ⊆ GLA[`] the torus obtained by base changing CA,` to F`. Since CA,` commutes
with ρA,`(GalK) ⊆ GA,`(Z`), we find that CA,` commutes with ρA,`(GalK). Let SA,` be the derived subgroup
of GA,`; it is semisimple group scheme over Z`.

We now consider the algebraic subgroup GΓ ⊆ GLA[`] constructed as in §3.1 with Γ := ρA,`(GalK). Note
that after possibly increasing the constants c and γ, Theorem 2.4 implies that A[`] is a semisimple Γ-module.

Lemma 4.4. The group GΓ is semisimple and commutes with CA,`.
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Proof. After possibly increasing c, Lemma 3.2 implies that GΓ is a semisimple subgroup of GLA[`]. That
GΓ commutes with CA,` is an easy consequence of Γ commuting with CA,`. �

Define the algebraic subgroup

HA,` := CA,` ·GΓ

of GLA[`]. The group HA,`, for ` sufficiently large, was first defined by Serre [Ser00, 136].
The groupHA,` is reductive by Lemma 4.4. From the image of the representation ρA,`, we have constructed

two reductive subgroups HA,` and (GA,`)F` of GLA[`]. We now prove that they agree; this is the main result
of this section.

Theorem 4.5. We have HA,` = (GA,`)F` . In particular, we have GΓ = (SA,`)F` .

We will use the following criterion to verify that the reductive groups HA,` and (GA,`)F` are equal.

Lemma 4.6. [Win02, Lemma 7] Let F be a perfect field whose characteristic is 0 or at least 5. Let G1 ⊆ G2

be reductive groups defined over F that have the same rank. Suppose we have a faithful linear representation
G2 ↪→ GLV , where V is a finite dimension F -vector space, such that the centers of the commutants of G1 and
G2 in EndF (V ) are the same F -algebra R. Suppose further that the commutative F -algebra R is semisimple.
Then G1 = G2. �

We first show that one of our reductive groups is a subgroup of the other.

Lemma 4.7. There is an inclusion HA,` ⊆ (GA,`)F` .

Proof. The reductive groups HA,` and (GA,`)F` both have the same central torus CA,`, so it suffices to prove
that GΓ ⊆ (SA,`)F` . After possibly increasing c, we may assume that ` ≥ 2g. Take any x ∈ Γ of order ` and
let ϕx : Ga → GLA[`] be the homomorphism t 7→ exp(t · log x) as in §3.1. Using that SA,` is semisimple and
by possibly increasing c, Lemma 6 of [Win02] implies that the image of ϕx is contained in (SA,`)F` . Since x
is an arbitrary element of Γ of order `, we deduce that GΓ is contained in (SA,`)F` . �

The following lemma, which we will prove in §4.3, shows that HA,`(F`) contains a large subgroup of
ρA,`(GalK).

Lemma 4.8. There is a constant b ≥ 1, depending only on g, such that ρA,`(GalL) ⊆ HA,`(F`) for some
extension L/K with [L : K] ≤ b.

The following lemma, which we will prove in §4.5, shows that our groups have the same rank.

Lemma 4.9. The reductive groups HA,` and (GA,`)F` have the same rank.

Lemma 4.10. The commutants of HA,` and (GA,`)F` in EndF`(A[`]) agree and their common center is a
semisimple F`-algebra.

Proof. Let L be the extension of K from Lemma 4.8. After possibly increasing c, Theorem 2.4 and [L :
K]�g 1 implies that the commutant R of ρA,`(GalL) in End(A[`]) is naturally isomorphic to End(AL)⊗ZF`
and that R is a semisimple F`-algebra. In fact, we have a natural isomorphism R = End(A) ⊗Z F` since
End(A) = End(AK) by Proposition 2.3 and our assumption that GA,` is connected. Since R is semisimple,
the center of R is semisimple.

Let R1 and R2 be the commutants of HA,` and (GA,`)F` , respectively, in EndF`(A[`]). We have inclusion
R2 ⊆ R1 ⊆ R since ρA,`(GalL) ⊆ HA,`(F`) by our choice of L and since HA,` ⊆ (GA,`)F` by Lemma 4.7.
So it suffices to show that R = End(A) ⊗Z F` is a subring of R2. Equivalently, it suffices to show that
(GA,`)F` commutes with End(A) ⊗Z F`; this is immediate since the actions of GalK and End(A) on T`(A)
commute. �

Proof of Theorem 4.5. We may assume that ` ≥ 5 after possibly increasing c. Set G1 := HA,` and G2 :=
(GA,`)F` . Using Lemma 4.6 with Lemmas 4.7, 4.9 and 4.10, we deduce that G1 = G2. �
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4.3. Proof of Lemma 4.8. Let Γ3 ⊆ Γ2 ⊆ Γ1 be the normal subgroups of Γ := ρA,`(GalK) as in Theo-
rem 3.5 with m = 2g. By increasing c, we may assume that ` > max{J(2g), 2g, 7}.

Since Γ = ρA,`(GalK) acts semisimply on the F`-vector space A[`] and Γ3 is a normal subgroup of Γ, we
deduce by Clifford’s theorem [CR81, 11.1] that Γ3 also acts semisimply on A[`]. Since ` > 2g and Γ3 is an
`-group, the action of Γ3 on A[`] is unipotent. Since the action of Γ3 on A[`] is unipotent and semisimple,
we must have Γ3 = 1. In particular, Γ2 is an abelian group with cardinality relatively prime to `.

Lemma 4.11. The group Γ2 has a set of generators with cardinality at most 2g.

Proof. Since Γ2 is abelian and has order relatively prime to `, it must lie in a maximal torus T of GLA[`]
∼=

GL2g,F` . Let F be a finite extension of F` over which T is split. So Γ2 is a subgroup of T(F) ∼= (F×)2g. Since
F× is cyclic, Γ2 lies in a finite abelian group generated by 2g elements. The lemma is now easy from the
structure theorem for finite abelian groups. �

Lemma 4.12. The center of Γ1 is Γ2.

Proof. Since Γ1/Γ2 is a product of non-abelian simple groups, we find that the cardinality of the center of
Γ1 divides |Γ2|. It thus suffices to show that Γ2 lies in the center of Γ1; equivalently, that the homomorphism
ϕ : Γ1/Γ2 → Aut(Γ2) arising from conjugation is trivial.

Suppose that ϕ 6= 1. Then for some prime p dividing |Γ2|, there is a finite simple group S of Lie type in
characteristic ` that acts non-trivially on the p-Sylow subgroup W of Γ2. We view W as an additive group.
Define W := piW , where i ≥ 0 is the largest integer such that S acts nontrivially on W and trivially on pW.

Suppose that S acts trivially on the quotient groupW/pW. Take any w ∈ W. We thus have a well-defined
map ξw : S → pW, h 7→ h(w)− w. Using that S acts trivially on pW, we find that

ξw(h1h2) = h1h2(w)− w = h1(w + ξw(h2))− w = h1(w)− w + ξw(h2) = ξw(h1) + ξw(h2)

for all h1, h2 ∈ S. Therefore, ξw : S → pW is a homomorphism. Since the group S is nonabelian and simple
and pW is abelian, we must have ξw = 0. Since w ∈ W was arbitrary, we deduce that S acts trivially on W
which contradicts our choice of W.

Therefore, S acts non-trivially on the Fp-vector spaceW/pW. From Lemma 4.11, the dimension ofW/pW
as an Fp-vector space is at most 2g. Since S is simple, we deduce that S is isomorphic to a subgroup of
GL2g(Fp).

Since ` divides |S| and ` > J(2g), Theorem 3.5 (with m = 2g and ` replaced by p) implies that S is
a finite simple group of Lie type in characteristic p. However, there is no finite simple group S that is of
Lie type in two distinct characteristics p and ` > 7. (We need ` > 7 to avoid the exceptional isomorphism
PSL2(F7) ∼= PSL3(F2).) This contradiction ensures that ϕ = 1. �

Let ψ : GalK → ρA,`(GalK)/Γ1 be the homomorphism obtained by composing ρ̄A,` with the obvious

quotient map. We define L to be the fixed field in K of ker(ψ); we have ρA,`(GalL) = Γ1. The field L is a

Galois extension of K which satisfies [L : K] ≤ J(2g). Since ` > J(2g), we have ρA,`(GalL)+ = Γ+.

Lemma 4.13. The group Γ1 is generated by Γ2 and Γ+.

Proof. The group Γ+ = ρA,`(GalL)+ is a contained in Γ1 = ρA,`(GalL). The homomorphism Γ+ → Γ1/Γ2

is surjective since ` - |Γ2| and since any finite simple group of Lie type in characteristic ` is generated by its
elements of order `. Therefore, Γ1 is generated by Γ+ and Γ2. �

Let Z be the center of (GA,`)F` ; we have Z◦ = CA,`.

Lemma 4.14. The group Γ2 is contained in Z(F`).

Proof. After possibly increasing c and γ, Theorem 2.4 implies that the centralizer of Γ1 = ρA,`(GalL) in
EndF`(A[`]) is End(AL) ⊗Z F` = End(A) ⊗Z F` (recall that [L : k] ≤ J(2g)). The group Γ2 is contained in
the center of Γ1 by Lemma 4.12, so we can identify Γ2 with a subgroup of (End(A) ⊗Z F`)×. The group
(End(A)⊗Z F`)×, and hence also Γ2, commutes with (GA,`)F` . Since Γ2 ⊆ ρA,`(Galk) ⊆ GA,`(F`), we deduce
that Γ2 lies in the center of (GA,`)F` . �
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Let H̃ be the algebraic subgroup of GLA[`] generated by Z and GΓ; note that Z and GΓ commute since

ρA,`(Galk) commutes with Z. Observe that the neutral component of H̃ is precisely our reductive group

HA,`. By Lemma 4.14, we have Γ2 ⊆ H̃(F`). Since GΓ(F`)+ = Γ+ by Theorem 3.1, after possibly increasing

c, we find that Γ+ is contained H̃(F`). Therefore, Γ1 is a subgroup of H̃(F`) by Lemma 4.13.

Lemma 4.15. The index of HA,` in H̃ can be bounded by a constant depending only on g.

Proof. Equivalently, we need to bound the index of CA,` in Z. It suffices to bound the cardinality of the
center of the semisimple group G := (GA,`)F`/(CA,`)F` . This is clear since G is a semisimple group whose
rank is bounded in terms of g; the cardinality of the center can be bounded in terms of the root datum
of G and there are only finitely many root datum for semisimple groups of bounded rank. (Moreover, the
cardinality of the center of a semisimple group of rank r is bounded above by 2r.) �

We have shown that Γ1 = ρA,`(GalL) is a subgroup of H̃(F`). Let L′ be the smallest extension of L for
which ρA,`(GalL′) ⊆ HA,`(F`). By Lemma 4.15, the degree [L′ : L] can be bounded in terms of g. We have
already seen that [L : K] can be bounded in terms of g. Therefore, we have ρA,`(GalL′) ⊆ HA,`(F`) with
[L′ : K]�g 1.

4.4. Complexity of HA,`. Define the Z-torus D := G2g
m ; we will identify it with the diagonal torus of

GL2g,Z. Let X(D) be the group of characters D → Gm. We have an isomorphism

Z2g ∼−→ X(D), m 7→ αm,

where αm is the character given by (x1, . . . , x2g) 7→
∏
i x

mi
i .

Consider a field F and a connected and reductive subgroup G of GL2g,F . Choose an algebraically closed
extension F ′/F and a torus T in the diagonal torus DF ′ ⊆ GL2g,F ′ that is conjugate to a maximal torus
of GF ′ by some element of GL2g(F

′). We define the complexity of G to be the smallest integer F (G) ≥ 1
satisfying

T =
⋂
m∈M

kerαm

in DF ′ for some subset M ⊆ Z2g with |mi| ≤ F (G) for all m ∈ M and 1 ≤ i ≤ 2g. We can identify the
character group of T with Z2g/ZM . Note that F (G) does not depend on the choice of F ′ or T .

The goal of this section is to show that F (HA,`)�g 1.

Lemma 4.16. We have F (GA,`)�g 1.

Proof. Let T be the Zariski closure in GA,` of the group generated by ρA,`(Frobq). As observed in §4.1, T

is a maximal torus of GA,`. Take t ∈ D(Q`) that is conjugate to ρA,`(Frobq). We have t = (π1, . . . , π2g),

where the πi are the roots of PA,q(x) in Q` with multiplicity. Let N ⊆ Z2g be the group of m ∈ Z2g for

which
∏2g
i=1 π

mi
i = 1. Choose a finite set M of generators for N with B := max{|mi| : m ∈ M, 1 ≤ i ≤ 2g}

minimal. We have F (GA,`) = F (T ) ≤ B. Proposition 2.6 says that there are only finitely many possibilities
for the group N in terms of g. We can thus bound B in terms of g. �

Lemma 4.17. We have F (CA,`)�g 1.

Proof. Define C := (CA,`)Q` ; it is the central torus of GA,`. Since CA,` is a torus with special fiber CA,`, we
have F (CA,`) = F (C). So it suffices to prove F (C)�g 1.

The center of GA,` is the intersection of all of its maximal tori. Since GA,` has rank r, there are maximal
tori T0, . . . , Tr of G such that the neutral component of Z := T0 ∩ · · · ∩ Tr is C.

Using that F (Ti) = F (GA,`)�g 1 by Lemma 4.16, we find that there an integer B ≥ 1 depending only
on g and subset M ⊆ Z2g such that

Z =
⋂
m∈M

kerαm

and |mi| ≤ B for all m ∈ M and 1 ≤ i ≤ 2g. We thus have C = ∩m∈M ′ kerαm, where M ′ is any finite set
that generates the smallest group ZM ⊆ N ⊆ Z2g for which Z2g/N is torsion-free. We can choose M ′ so
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that B′ := max{|mi| : m ∈M ′, 1 ≤ i ≤ 2g} is minimal. Since there are only finitely many possible M for a
given g, we find that B′ �g 1. Therefore, F (C) ≤ B′ �g 1. �

Lemma 4.18. We have F (GΓ)�g 1.

Proof. After possibly increasing c, we may assume that ` > c2(2g), with c2(2g) as in Lemma 3.3. Let
{%i : Gi → GL2g}i∈I be the representations of Lemma 3.3 with m = 2g; they depend only on g.

Fix a split maximal torus Ti of Gi and define Hi := %i(Ti)F` . We have F (Hi) = F (%i(Gi)Q) =: fi, which

does not depend on `. Lemma 3.3 implies that any maximal torus T ⊆ (GΓ)F` is conjugate in GL2g,F` to Hi

for some i ∈ I. Therefore,

F (GΓ) = F (T ) = F (Hi) = fi.

Since I is finite, we have F (GΓ) ≤ max{fi : i ∈ I} �g 1. �

Combining the previous two lemmas, we deduce the following.

Lemma 4.19. We have F (HA,`) ≤ B, where B is a positive integer depending only on g.

Proof. Let T be a subtorus of DF` that is conjugate in GL2g,F`
∼= GLA[`],F` to a maximal torus of (HA,`)F` . We

have T = T1 · T2, where T1 and T2 are conjugate to (CA,`)F` and to a maximal torus of (GΓ)F` , respectively.

By Lemmas 4.17 and 4.18, we have F(T1)�g 1 and F(T2)�g 1.
So there are subsets M1 and M2, with max{|mi| : m ∈ M1 ∪M2, 1 ≤ i ≤ 2g} �g 1 such that Ti =

∩m∈Mi
kerαm for 1 ≤ i ≤ 2. We then have T = ∩m∈M kerαm, where M is a finite set of generators of the

subgroup ZM1 ∩ ZM2 of Z2g. We can choose M so that B := max{|mi| : m ∈ M, 1 ≤ i ≤ 2g} is minimal.
Since there are only finitely many possible M1 and M2 for a given g, we find that B �g 1. Therefore,
F (HA,`) = F (T ) ≤ B �g 1. �

4.5. Proof of Lemma 4.9. Take B as in Lemma 4.19. With our fixed prime q, let π1, . . . , π2g ∈ Q be the
roots of PA,q(x) with multiplicity and define the number field F := Q(π1, . . . , π2g). Let M be the (finite)
set of subsets M ⊆ Z2g such that

max{|mi| : m ∈M, 1 ≤ i ≤ 2g} ≤ B

and such that rankZ(ZM) > 2g − r. For each M ∈M, define

βM :=
∑
m∈M

NF/Q

( ∏
1≤i≤2g,mi>0

πmii −
∏

1≤i≤2g,mi<0

π−mii

)2

;

it is an integer since all the πi are algebraic integers.

Lemma 4.20. If rank(HA,`) 6= r, then βM ≡ 0 (mod `) for some M ∈M.

Proof. Suppose that rank(HA,`) 6= r. From Lemma 4.7, we have an inclusion HA,` ⊆ (GA,`)F` in GLA[`] of
reductive groups. Therefore,

rank(HA,`) ≤ rank((GA,`)F`) = rank(GA,`) = r.

Our assumption implies that rank(HA,`) < r.
Let T be a subtorus of DF` that is conjugate in GL2g,F`

∼= GLA[`],F` to a maximal torus of (HA,`)F` . By

Lemma 4.19, there is a set M ⊆ Z2g such that T = ∩m∈M kerαm and such that |mi| ≤ B for all m ∈ M
and 1 ≤ i ≤ 2g. We have X(T ) ∼= Z2g/M and hence dimT = 2g − rankZ(ZM). Therefore,

rankZ(ZM) = 2g − dimT = 2g − rank(HA,`) > 2g − r,

and hence M ∈M.
After possibly increasing c and γ, we may assume that ` > N(q) and hence q - `. So ρA,` is unramified at q

and ρA,`(Frobq) has characteristic polynomial PA,q(x) modulo `. The semisimple component of ρA,`(Frobq)

is conjugate in GL2g(F`) to an element t ∈ T (F`). Let b1, . . . , b2g ∈ F` be the diagonal entries of t. Let λ be

a prime ideal of OF dividing ` and choose an embedding Fλ ↪→ F`. After first possibly conjugating T and t
by some element of GL2g(F`), we may assume that the image of πi modulo λ is bi.
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Take any m ∈M . We have t ∈ T (F`), so
∏
i b
mi
i = 1 and hence∏

i,mi>0

bmii −
∏

i,mi<0

b−mii = 0.

Therefore, ∏
1≤i≤2g,mi>0

πmii −
∏

1≤i≤2g,mi<0

π−mii ≡ 0 (mod λ)

for all m ∈M . The lemma is now clear since βM is the sum of integers divisible by `. �

Lemma 4.21. The integer βM is nonzero for all M ∈M.

Proof. Suppose that there is a set M ∈ M such that βM = 0. We thus have
∏
i π

mi
i = 1 for all m ∈

M . Therefore, the subgroup ΦA,q of Q× generated by π1, . . . , π2g is an abelian group of rank at most
2g − rankZ(ZM). By our definition of M, ΦA,q has rank strictly less than r. This is a contradiction since
ΦA,q has rank r by our initial choice of q. Therefore, βM is nonzero for all M ∈M. �

From Weil, we know that each πi has complex absolute value N(q)1/2 under any embedding F ⊆ C. We
can bound [F : Q] in terms of g, so there are positive constants c′ and γ′, depending only on g, such that

|βM | < c′N(q)γ
′

for all M ∈M. We may thus assume that c and γ are taken so that |βM | < cN(q)γ holds for all M ∈M.
Now suppose that rank(HA,`) < r. By Lemmas 4.20 and 4.21, we have ` ≤ |βM | for some M ∈ M.

Therefore, ` < cN(q)γ . However, this contradicts ` ≥ c ·max({[K : Q], h(A), N(q)})γ ≥ cN(q)γ , so we must
have rank(HA,`) = r.

4.6. The derived subgroup of GA,`. We have already proved that the Z`-group scheme GA,` is reductive.
Let SA,` be the derived subgroup of GA,`; it is semisimple group scheme over Z`.

By Theorem 4.5, there is a subgroup Γ of GLA[`](F`) that acts semisimply on A[`] such that GΓ = (SA,`)F` ,
where GΓ is defined as in §3.1. By Theorem 3.1, we have Γ+ = SA,`(F`)+. Since Γ+ is a normal subgroup
of Γ, we find that Γ+ acts semisimply on A[`] by Clifford’s theorem [CR81, 11.1]. We have GΓ = GΓ+ , so
we may take Γ := SA,`(F`)+.

Lemma 4.22.

(i) Every simple quotient of SA,`(F`)+ is a finite simple group of Lie type in characteristic `. In partic-
ular, SA,`(F`)+ is perfect.

(ii) The quotient group SA,`(F`)/SA,`(F`)+ is abelian and its cardinality can be bounded in terms of g.
(iii) The group SA,`(F`)+ is the commutator subgroup of SA,`(F`).

Proof. Let G be a finite simple quotient of SA,`(F`)+. By increasing c, we may assume that ` > J(2g) with
J(2g) as in Theorem 3.5. The group SA,`(F`)+, and hence also G, is generated by elements of order `, so
Theorem 3.5 implies that G is either a finite (nonabelian) simple group of Lie type in characteristic ` or a
cyclic group of order `.

Suppose that G is a cyclic group of order `. Theorem 3.5 implies that Γ = SA,`(F`)+ contains a normal
subgroup U 6= 1 that is an `-group. So U is a unipotent subgroup of GLA[`](F`). Since U is a normal
subgroup of Γ, we find that U acts semisimply on A[`] by Clifford’s theorem [CR81, 11.1]. Since the action
of U on A[`] is unipotent and semisimple, we must have U = 1. This contradiction proves part (i).

Since (SA,`)F` is of the form GΓ, part (ii) follows from statement 3.6(v) of [Nor87].
From (ii), we find that SA,`(F`)′ ⊆ SA,`(F`)+ and that SA,`(F`)+/SA,`(F`)′ is abelian. Since SA,`(F`)+

has no abelian quotients by (i), we deduce that SA,`(F`)+ = SA,`(F`)′. This proves (iii). �

Let B be the inverse image of SA,`(F`)+ under the reduction modulo ` map SA,`(Z`)→ SA,`(F`).

Lemma 4.23. Let H be a closed subgroup of SA,`(Z`) whose image in SA,`(F`) contains SA,`(F`)+. Then
H ⊇ B.
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Proof. Without loss of generality, we may assume that the image of H in SA,`(F`) is SA,`(F`)+ = Γ. We
have GΓ = (SA,`)F` , so Ndim(H) = dim(SA,`)F` .

Let S be the Zariski closure of H in GA,`. We have S ⊆ (SA,`)Q` . By Theorem 3.4(i), we have Ndim(H) ≤
dimS ≤ dim(SA,`)Q` . So we have

Ndim(H) ≤ dimS ≤ dim(SA,`)Q` = dim(SA,`)F` = Ndim(H).

Therefore, dimS = dim(SA,`)Q` and hence S = (SA,`)Q` since (SA,`)Q` is connected. In particular, S is
connected and semisimple. Applying Theorem 3.4(ii), we find that

[S(Q`) ∩ GA,`(Z`) : H] ≤ c4(2g).

After possibly increasing c, we may assume that ` > c4(2g) and thus [SA,`(Z`) : H] < `. Therefore, H
contains the pro-` group that is the kernel of the reduction map SA,`(Z`) → SA,`(F`). It is now clear that
H is equal to B. �

Lemma 4.24. The group B is perfect and is equal to SA,`(Z`)′.

Proof. Let H be the group B′ or SA,`(Z`)′. By Lemma 4.22, we find that the image of H in SA,`(F`) is
SA,`(F`)+. Therefore, H = B by Lemma 4.23. This proves the lemma. �

We now summarize some important properties of the groups SA,`(Z`).

Proposition 4.25.

(i) The group SA,`(Z`)′ agrees with the inverse image of SA,`(F`)′ under the reduction modulo ` homo-
morphism SA,`(Z`)→ SA,`(F`).

(ii) The groups SA,`(Z`)′ and SA,`(F`)′ are perfect.
(iii) The cardinality of the group SA,`(Z`)/SA,`(Z`)′ ∼= SA,`(F`)/SA,`(F`)′ can be bounded in terms of g.
(iv) The finite simple quotients of SA,`(Z`)′ are groups of Lie type in characteristic `.
(v) We have GA,`(Z`)′ = SA,`(Z`)′.

Proof. By Lemma 4.22, SA,`(F`)′ is perfect and equals SA,`(F`)+. Parts (i) and (ii) are immediate conse-
quences of Lemma 4.24. Since SA,` is smooth, the reduction modulo ` map SA,`(Z`)→ SA,`(F`) is surjective;
part (iii) now follows from part (i) and Lemma 4.22(ii).

Let G be a finite simple quotient of SA,`(Z`)′; it is nonabelian since SA,`(Z`)′ is perfect. The kernel of
the reduction modulo ` map SA,`(Z`)′ � SA,`(Z`)′ is a pro-` group. Since pro-` groups are prosolvable, we
find that G must be a quotient of SA,`(F`)′. By Lemma 4.22(i), the group G is a finite simple group of Lie
type in characteristic `.

Define H := GA,`(Z`)′; it is a closed subgroup of SA,`(Z`). With G := (GA,`)F` , the quotient G(F`)/G(F`)+

is abelian by [Pet16, Proposition 1.1]. This implies that H modulo ` is a subgroup of GA,`(F`)+ = SA,`(F`)+.
Since H ⊇ SA,`(Z`)′, we find by Lemma 4.24 that H modulo ` contains the group SA,`(F`)+. Therefore,
H = B. By Lemma 4.24, we deduce that GA,`(Z`)′ = SA,`(Z`)′. �

Remark 4.26. There is an alternate description of the commutator subgroups of SA,`(Z`) and SA,`(F`). Let
π : Ssc

A,` → SA,` be the simply connected cover of SA,`. We have SA,`(Z`)′ = π(Ssc
A,`(Z`)) and SA,`(F`)′ =

π(Ssc
A,`(F`)); as noted in §1.2 of [Win02], π(Ssc

A,`(F`)) is the commutator subgroup of SA,`(F`) and π(Ssc
A,`(Z`))

is the subgroup of SA,`(Z`) whose reduction modulo ` lies in π(Ssc
A,`(F`)).

4.7. Proof of Theorem 1.2(d). With Γ := ρA,`(GalK), we have GΓ = (SA,`)F` by Theorem 4.5. By

Theorem 3.1, we have Γ+ = GΓ(F`)+ = SA,`(F`)+ and hence SA,`(F`)+ is a subgroup of Γ = ρA,`(GalK).

Since SA,`(F`)+ is perfect by Lemma 4.22(i), we have SA,`(F`)+ ⊆ ρA,`(GalK)′. Therefore, ρA,`(GalK)′ ⊆
GA,`(F`)′ = SA,`(F`)′, where the last equality follows from Lemma 4.25(v). By Lemma 4.22(iii), we deduce
that

ρA,`(GalK)′ = SA,`(F`)′ = SA,`(F`)+.

So ρA,`(GalK)′ is a closed subgroup of SA,`(Z`) whose reduction modulo ` is equal to SA,`(F`)+. By Lem-
mas 4.23 and 4.24, we have ρA,`(GalK)′ = SA,`(Z`)′. Therefore, ρA,`(GalK)′ = GA,`(Z`)′ by Lemma 4.25(v).
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5. Abelian representations

Fix an abelian variety A of dimension g ≥ 1 defined over a number field K. Assume that all the `-adic
monodromy groups GA,` are connected; equivalently, Kconn

A = K.
Fix an isogeny

ι : A→
∏s

i=1
Ai,

where Ai = Beii with ei ≥ 1 and the Bi are simple abelian varieties over K that are pairwise non-isogenous.
By Proposition 2.3(iv), each Bi is geometrically simple and they are pairwise non-isogenous. The isogeny ι
induces an isomorphism End(A) ⊗Z Q =

∏s
i=1 End(Ai) ⊗Z Q. Note that none of the results of this section

will depend on the choice of ι.
Let L be the center of End(A)⊗Z Q. Let Li be the center of End(Ai)⊗Z Q; we can also identify it with

the center of End(Bi)⊗Z Q. We have L =
∏s
i=1 Li and each Li is a number field.

Let TL be the torus defined over Q for which TL(R) = (L⊗Q R)× for any Q-algebra R with the obvious
functoriality. We have TL =

∏s
i=1 TLi , where TLi is equal to the restriction of scalars ResLi/Q(Gm,Li).

5.1. The homomorphism βA,`. Take any prime `. The isogeny ι induces an isomorphism V`(A) =
⊕si=1V`(Ai) of Q`[GalK ]-modules. Note that each V`(Ai) is a free Li⊗QQ`-module of rank di := 2 dimAi/[Li :
Q], cf. [Rib76, II Theorem 2.1.1]. Since the GalK and L actions on V`(A) commute, we have

ρA,`(GalK) ⊆ AutL⊗QQ`(V`(A)) =
∏s

i=1
AutLi⊗QQ`(V`(Ai))

∼=
s∏
i=1

GLdi(Li ⊗Q Q`).

By taking determinants, we obtain from ρA,` a homomorphism

βA,` : GalK →
s∏
i=1

(Li ⊗Q Q`)× =

s∏
i=1

TLi(Q`) = TL(Q`).

Using
∏s
i=1 TLi = TL, we clearly have

∏s
i=1 βAi,` = βA,`. The homomorphism βA,` : GalK → TL(Q`) is

unramified at all non-zero prime ideals p - ` of OK for which A has good reduction since ρA,` has this
property.

Lemma 5.1. There is a field extension F/K with [F : K]�g 1 such that for all primes `, the homomorphism
βA,`|GalF : GalF → TL(Q`) is unramified at all non-zero prime ideals p - ` of OF .

Proof. Define the number field F = K(A[12]); we have [F : K] ≤ 12(2g)2 �g 1. By a criterion of Raynaud
(see Proposition 4.7 of [SGA7 I, Expose IX]), the abelian variety AF has semistable reduction at all non-zero
prime ideals of OF .

Take any prime `. Take any non-zero prime ideal p - ` of OF and denote by Ip an inertia subgroup of
GalF at p. Since A has semistable reduction at p, we know from Grothendieck (Proposition 3.5 of [SGA7
I, Expose IX]) that the group ρA,`(Ip) consists of unipotent elements in GLV`(Q`). Since TL is a torus, we
deduce that βA,`(Ip) = 1. Therefore, βA,`|GalF is unramified at p. �

5.2. The torus Y . Fix notation as in §2.6 and let Vi be the homology group of Ai. The isogeny ι induces
an isomorphism V = ⊕si=1Vi. Since End(A)⊗Z Q acts faithfully on V , we have a faithful action of TL on V
and we may thus identify TL with an algebraic subgroup of GLV .

Let G be the algebraic subgroup of GLV over Q that satisfies

G (R) =
∏s

i=1
AutLi⊗QR(Vi ⊗Q R)

for any Q-algebra R with the obvious functoriality. Since V = ⊕si=1Vi, we find that TL ⊆ G ⊆ GLV . The
Li-vector space Vi has dimension di = 2 dimAi/[Li : Q]. We define

detL : G → TL

to be the homomorphism that for each Q-algebra R takes (g1, . . . , gs) ∈ G (R) ∼=
∏s
i=1 GLdi(Li ⊗Q R) to

(det g1, . . . ,det gs) ∈
∏s
i=1(Li ⊗Q R)× = (L⊗Q R)× = TL(R). In particular, detL gives an isogeny TL → TL

of tori of degree d1 · · · ds.
Observe that MTA ⊆ G since the Mumford–Tate group MTA commutes with the action of L on V . Let

CA be the central torus of the reductive group MTA. One knows that the commutant of MTA in EndQ(V ) is
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naturally isomorphic to End(A)⊗Z Q. We have CA ⊆ TL since CA commutes with MTA and End(A)⊗Z Q.
Define the algebraic group

Y := detL(CA);

it is a subtorus of TL defined over Q. Observe that detL |CA : CA → Y is an isogeny of degree at most
d1 · · · ds. For later, note that d1 · · · ds �g 1.

The following gives some important information on the image of βA,`.

Proposition 5.2. We have βA,`(GalK) ⊆ Y (Q`). Moreover, βA,`(GalK) is Zariski dense in YQ` and
detL(GA,`) = YQ` .

Proof. Using comparison isomorphisms, we have

G (Q`) =
∏s

i=1
AutLi⊗QQ`(V`(Ai)) = AutL⊗QQ`(V`(A))

and hence ρA,`(GalK) ⊆ G (Q`). In particular, GA,` ⊆ GQ` . The homomorphism

βA,` : GalK → TL(Q`)

can be obtained by composing ρA,` : GalK → G (Q`) with detL : G (Q`)→ TL(Q`).
We have βA,`(GalK) = detL(ρA,`(GalK)) ⊆ detL(GA,`(Q`)). By Proposition 2.11, we have βA,`(GalK) ⊆

detL(MTA(Q`)). Since MTA is reductive and TL is a torus, we have detL(MTA) = detL(CA) = Y . Therefore,
βA,`(GalK) ⊆ Y (Q`).

By Proposition 2.12, (CA)Q` is the central torus of the reductive group GA,`. Since GA,` is reductive,
we have detL(GA,`) = detL((CA)Q`) = YQ` . Since ρA,`(GalK) is Zariski dense in GA,`, we deduce that
βA,`(GalK) = detL(ρA,`(GalK)) is Zariski dense in YQ` . �

Since βA,` is continuous and GalK is compact, we have βA,`(GalK) ⊆ Y (Q`)c, where Y (Q`)c is the
maximal compact subgroup of Y (Q`) with respect to the `-adic topology. That Y (Q`) has a unique maximal
compact subgroup uses that Y (Q`) is abelian. The following theorem, which we will prove in §5.6, is the
main result of §5.

Theorem 5.3.

(i) For any prime `, we have [Y (Q`)c : βA,`(GalK)]�g,[K:Q] 1.
(ii) For any prime ` that is unramified in K, we have [Y (Q`)c : βA,`(GalK)]�g 1.

5.3. λ-adic representations. Throughout §5.3, we shall further assume that A is a power of a simple
abelian variety and hence L is a number field.

We have L` := L ⊗Q Q` =
∏
λ|` Lλ, where λ runs over the prime ideals of OL dividing ` and Lλ is the

λ-adic completion of L. For each λ, define Vλ(A) := V`(A) ⊗L` Lλ; it is a Lλ-vector space of dimension
d = 2g/[L : Q]. We have an isomorphism V`(A) = ⊕λ|`Vλ(A) of Q`[GalK ]-algebras. The Galois action on
Vλ(A) gives a representation

ρA,λ : GalK → AutLλ(Vλ(A)) ∼= GLd(Lλ).

By composing ρA,λ with the determinant map, we obtain a homomorphism

βA,λ : GalK → L×λ .

Using TL(Q`) = (L⊗Q Q`)× =
∏
λ|` L

×
λ , we find that βA,` =

∏
λ|` βA,λ.

Lemma 5.4. Take any non-zero prime ideal p of OK for which A has good reduction. Then there is an
element Fp ∈ L× such that βA,λ is unramified at p and satisfies

βA,λ(Frobp) = Fp

for all non-zero prime ideals λ of OF that do not divide the characteristic of Fp.

Proof. Let λ be a non-zero prime ideal of OF that does not divide the characteristic of Fp. Theorem 2.1.1
of [Rib76, II §1] says that there is a polynomial Qp(x) ∈ L[x] such that det(xI − ρA,λ(Frobp)) = Qp(x);
the polynomial Qp(x) does not depend on the choice of λ. Therefore, βA,λ(Frobp) = det(ρA,λ(Frobp)) =
(−1)dQp(0) which is an element of L× that does not depend on λ. �
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For each prime `, let χ` : GalK → Z×` be the `-adic cyclotomic character; we have σ(ζ) = ζχ`(σ) mod `n for

any `n-th root of unity ζ ∈ K and σ ∈ GalK . Reducing modulo `, we obtain a homomorphism χ` : GalK →
F×` .

For any non-zero prime ideal λ of OL, the image of βA,λ is compact so it lies in O×λ . Reducing gives a
homomorphism

βA,λ : GalK → F×λ .

Lemma 5.5. Fix a prime ` ≥ 5 that splits completely in L and is unramified in K and let λ be a prime ideal
of OL dividing `. Let p|` be a prime ideal of OK for which A has good reduction at p and let Ip be an inertia

subgroup of GalK for the prime p. Then there is an integer 0 ≤ b ≤ 2g/[L : Q] such that βA,λ(σ) = χ`(σ)b

holds for all σ ∈ Ip.

Proof. Since ` splits completely in L, we have Fλ = F` and hence βA,λ : GalK → F×λ = F×` .
There is a Oλ-submodule M of Vλ(A) of rank dimLλ Vλ(A) that is stable under the action of Ip. Let W

be the semi-simplification of M/λM as a module over Fλ[Ip] = F`[Ip]. The character βA,λ|Ip thus arises by
taking the determinant of the action of Ip on the vector space W over Fλ = F`.

Take any irreducible F`[Ip]-submodule V ofW and set n = dimF` V. Let Z be the ring of endomomorphisms
of V as an F`[Ip]-module. Since V is irreducible, Z is a division algebra of finite dimension over F`. Therefore,
Z is a finite field and V is a vector space of dimension 1 over Z. Choose an isomorphism Z ∼= F`n of fields.
The action of Ip on V corresponds to a character α : Ip → Z× ∼= F×`n . Let ε1, . . . , εn : Ip → F×`n be the
fundamental character of level n, cf. [Ser72, §1.7]. There are unique integers ei ∈ {0, 1, . . . , ` − 1} such that
α = εe11 · · · εenn . These integers e1, . . . , en are called the tame inertia weights of V.

Note that V will arise in the semi-simplification of A[`] as an F`[Ip]-module since Vλ(A) ⊆ V`(A). From
[Car08, Théorème 1.2], we find that all of the integers ei are either 0 or 1 (this uses that A[`] is isomorphic
as an F`[GalK ]-module to the dual of H1

ét(AK ,Z/`Z) and the conditions on ` and p in the statement of the
lemma).

Take any σ ∈ Ip. The determinant of εi(σ) ∈ F×`n ⊆ AutF`(F`n) is equal to NF`n/F`(εi(σ)) = χ`(σ),
where the last equality uses Proposition 8 of [Ser72]. Viewing α(σ) as an endomorphism of V, we thus have
det(α(σ)) = χ`(σ)e1+···+en . Since ei ∈ {0, 1}, there is an integer 0 ≤ b ≤ dimF` V such that det(σ|V) =
det(α(σ)) = χ`(σ)b for all σ ∈ Ip.

Therefore, there is an integer 0 ≤ b ≤ dimF`W = dimVλ(A) = 2g/[L : Q] such that βA,λ(σ) = χ`(σ)b for
all σ ∈ Ip. �

5.4. Serre tori. We now recall the families of compatible abelian Galois representations described by Serre
in Chapter II of [Ser98]; for statements generalized to λ-adic representations see section I of [Rib76]. In
Lemma 5.6, we will see how these representations give rise to our βA.`.

Define the torus

TK := ResK/Q(Gm,K),

where we are taking restriction of scalars from K to Q. Let IK be the group of ideles of K.
Fix a modulus m, i.e., a sequence {mv}v of non-negative integers indexed by the places v of K satisfying

mv = 0 for all but finitely many places v. For a finite place v with mv = 0, we define Uv,m = O×v . For a finite
place v with mv > 0, we define Uv,m to be the subgroup of x ∈ O×v for which the v-adic valuation of 1− x is
at least mv. For an infinite place v, let Uv,m be the connected component of K×v containing the identity if
mv ≥ 1 and K×v otherwise. Define Um :=

∏
v Uv,m; it is an open subgroup of IK . Set Im := IK/Um.

Let Em be the group of x ∈ K× for which x ∈ Um. We let Tm be the quotient of TK by the Zariski closure
of Em ⊆ K× = TK(Q). In [Ser98, II], Serre constructs a commutative algebraic group Sm over Q whose
neutral component is Tm and for which the quotient Sm/Tm equals the finite group Cm := IK/(ImK

×). He
also constructs a homomorphism

ε : Im → Sm(Q)
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for which we have a commutative diagram

1 // K×/Em
//

��

Im //

ε

��

Cm
// 1

1 // Tm(Q) // Sm(Q) // Cm
// 1.

They are characterized by the following universal property: for any field extension k/Q, homomorphism
f ′ : Tm,k → A of commutative algebraic groups over k and homomorphism ε′ : Im → A(k) such that the
following diagram commutes

K×/Em

��

// Im

ε′

��

Tm(k)
f ′
// A(k),

there is a unique homomorphism g : Sm,k → A which induces f ′ and ε′ (i.e., f ′ is obtained by composing

Tm ↪→ Sm and g and ε′ is obtained by composing ε with Sm(Q) ↪→ Sm(k)
g−→ A(k)).

Take any prime `. Let α` : IK → Sm(Q`) be the homomorphism obtained by composing the natural
projection IK →

∏
v|`K

×
v = (K⊗QQ`)× = TK(Q`) with the homomorphism TK(Q`)→ Sm(Q`). Composing

the quotient map IK → Im with ε gives a homomorphism IK → Sm(Q) that we shall also denote by ε. For
all x ∈ K×, we have α`(x) = ε(x), cf. [Ser98, II 2.3]. We thus have a continuous homomorphism

ε` : IK → Sm(Q`), x 7→ ε(x)α`(x)−1

that vanishes on K×. We shall also denote by

ε` : GalK → Sm(Q`)

the homomorphism arising from ε` via class field theory.
We now observe that the homomorphisms ε` are compatible. Take any non-zero prime p - ` of OK such

that mv = 0, where v is the corresponding place. Let πp be an element of IK that is a uniformizer at the
place v and is 1 at the other places. Therefore,

ε`(Frobp) = ε`(πp) = ε(πp)α`(πp)−1 = ε(πp);

this is an element of Sm(Q) that is independent of ` and the choice of πp.

We now show that our homomorphisms βA,` arise from Serre’s ε` for some modulus m.

Lemma 5.6. There is a modulus m and a homomorphism φ : Sm → TL of algebraic groups over Q such that

each βA,` is equal to the composition of ε` : GalK → Sm(Q`) with the homomorphism Sm(Q`)
φ−→ TL(Q`).

Proof. Using TL =
∏s
i=1 TLi and βA,` =

∏s
i=1 βAi,`, it suffices to prove the lemma for each Ai; we can find

a common modulus m by increasing the values mv appropriately. We may thus assume that A is a power of
a simple abelian variety and hence L is a field.

Since L is a number field, we have a natural isomorphism L⊗Q Q` =
∏
λ|` Lλ, where the product is over

the non-zero prime ideals of OL that divide `. We have a homomorphism

βA,` : GalK → TL(Q`) = (L⊗Q Q`)× =
∏

λ|`
L×λ .

We thus have βA,` :=
∏
λ|` βA,λ, where βA,λ : GalK → L×λ is obtained by composing βA,` with the obvious

projection. Note that these agree with the representations βA,λ defined in §5.3. By Lemma 5.4, for every
prime p for which A has good reduction, there is an element Fp ∈ L× = T (Q) such that βA,λ(Frobp) = Fp

for all λ that do not divide the characteristic of Fp.
Fix a non-zero prime ideal λ′ of OL and let `′ be the rational prime it divides. Théorèm 2 of [Hen82] now

applies and says that βA,λ′ is locally algebraic. The main theorem of section I.6 of [Rib76] then implies that
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there is a modulus m and a homomorphism ψ : Sm,L → Gm,L such that βA,λ′ agrees with the composition

GalK
ε`′−−→ Sm(Q`′) ⊆ Sm(Lλ′)

ψ−→ Gm(Lλ′) = L×λ′ .

Now take any non-zero prime ideal λ of OL dividing a prime `. Take any non-zero prime p - ``′ for which A
has good reduction. We have ε`(Frobp) = ε`′(Frobp) in Sm(Q), so

βA,λ(Frobp) = Fp = βA,λ′(Frobp) = ψ(ε`′(Frobp)) = ψ(ε`(Frobp)).

By the Chebotarev density theorem, we deduce that βA,λ is the composition of ε` with the homomor-

phism Sm(Q`) ⊆ Sm(Lλ)
ψ−→ Gm(Lλ). We take φ to be the composition of the natural morphism Sm →

ResL/Q(Sm,L) with the morphism ResL/Q(Sm,L)→ ResL/Q(Gm,L) = TL induced by ψ. Since βA,` =
∏
λ βA,λ,

one can now check that the lemma holds with this φ. �

We define
ϕ : TK → TL

to be the homomorphism obtained by composing the quotient map TK → Tm with the homomorphism φ in
Lemma 5.6.

Take any prime `. We have TK(Q`) = (K⊗QQ`)× =
∏
v|`K

×
v and TK(Q`)c =

∏
v|`O×v , where TK(Q`)c is

the maximal compact subgroup of TK(Q`) with respect to the `-adic topology. Let π` : TK(Q`) ↪→ IK be the
homomorphism that extends an element of

∏
v|`K

×
v to an idele by setting 1 at the places of K that do not

divide `. Since βA,` has abelian image, class field theory gives a homomorphism IK → TL(Q`) corresponding
to βA,`; we will also denote it by βA,`.

Proposition 5.7. There is an open subgroup U ⊆ TK(Q`)c with [TK(Q`)c : U ]�g 1 such that

βA,`(π`(u)) = ϕ(u)−1

holds for all u ∈ U . We can take U = TK(Q`)c when ` is not divisible by any non-zero prime ideal p ⊆ OK
for which A has bad reduction.

Proof. Define the group G := (φ ◦ ε)(π`(TK(Q`)c)) ⊆ TL(Q).
Take any prime `′ 6= `. By Lemma 5.6, we have βA,`′ = φ ◦ (ε ·α−1

`′ ). We have α`′(π`(TK(Q`)c)) = 1 since
` 6= `′, so

βA,`′(π`(TK(Q`)c)) = (φ ◦ ε)(π`(TK(Q`)c)) = G.

By class field theory, G is thus the group generated by βA,`′(Ip) where Ip are inertia groups at primes p|`.
By Lemma 5.1 and ` 6= `′, we find that G is finite and |G| ≤ [F : K]�g 1.

There is thus an open subgroup U ⊆ TK(Q`)c with (φ ◦ ε)(π`(U)) = 1 and [TK(Q`)c : U ] = |G| �g 1. For
each u ∈ U , we have

βA,`(π`(u)) = (φ ◦ ε`)(π`(u)) = (φ ◦ ε)(π`(u)) · φ(α`(π`(u)))−1 = φ(α`(π`(u)))−1,

where we have used Lemma 5.6 in the first equality. The first part of the lemma follows by noting that
φ(α`(π`(u))) = ϕ(u) for all u ∈ TK(Q`)c.

Now suppose that ` is not divisible by any non-zero prime ideal p ⊆ OK for which A has bad reduction.
Take any prime `′ 6= `. By our choice of `, the representation ρA,`′ , and hence also βA,`′ , is unramified at
all primes that divide `. By class field theory, this is equivalent to having βA,`′(π1(TK(Q`)c)) = 1. From the
work above, this implies that 1 = βA,`′(π`(TK(Q`)c)) = (φ ◦ ε)(π`(TK(Q`)c)) = G. Therefore, U = TK(Q`)c
since [TK(Q`)c : U ] = |G| = 1. �

The following lemma, which we will prove in §5.5, gives some additional information on ϕ.

Lemma 5.8. Set d := [K : Q] and e := [L : Q]. There are bases α1, . . . , αd of X(TK) and γ1, . . . , γe of
X(TL) such that

γj ◦ ϕ =

d∏
i=1

α
ni,j
i

holds for all 1 ≤ j ≤ e, where ni,j are integers satisfying |ni,j | ≤ 2g. Moreover, the two bases are stable
under the GalQ-actions on X(TK) and X(TL).
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Lemma 5.9. Let W be the kernel of ϕ : TK → TL. Then W/W ◦ is a finite group scheme whose cardinality
can be bounded in terms of g.

Proof. Set d := [K : Q] and e := [L : Q]. Define the homomorphism ϕ∗ : X(TL)→ X(TK), γ 7→ γ ◦ ϕ. The
group X(W ) is isomorphic to the cokernel of ϕ∗. The cardinality m of the finite group scheme W/W ◦ is
equal to the cardinality of the torsion subgroup of the cokernel of ϕ∗.

Let A ∈ Md,e(Z) be a matrix that represents ϕ∗ with respect to the bases of X(TL) and X(TK) from
Lemma 5.8. In particular, all the entries of A have absolute value at most 2g. Let D ∈Md,e(Z) be the Smith
Normal Form of A. There is an integer 0 ≤ k ≤ min{d, e} such that Di,j > 0 if 1 ≤ i = j ≤ k and Di,j = 0

otherwise. Moreover, the integer Di,i divides Di+1,i+1 for all 1 ≤ i ≤ k − 1. Therefore, m =
∏k
i=1Di,i.

Note that m =
∏k
i=1Di,i is equal to the greatest common divisor of all determinants of k×k minors of A,

cf. [MR09, Proposition 8.1]. Since the entries of A are bounded in terms of g and k ≤ e ≤ 2g, we conclude
that m�g 1. �

5.5. Proof of Lemma 5.8. We first assume that L is a field.
For a prime `, we have an isomorphism (TK)Q` =

∏
p|` ResKp/Q`(Gm,Kp

), where the product is over prime

ideals p|` of OK . Similarly, we have (TL)Q` =
∏
λ|` ResLλ/Q`(Gm,Lλ), where the product is over prime ideals

λ|` of OL.
Now fix any prime ` ≥ 5 that splits completely in the number fields K and L and is not divisible by any

prime for which A has bad reduction. For the rest of the proof p and λ will denote prime ideals of OK and
OL, respectively, that divide `.

The tori (TK)Q` and (TL)Q` are split since ` splits completely in K and L. In particular, we have
isomorphisms (TK)Q` =

∏
p|`Gm,Q` and (TL)Q` =

∏
λ|`Gm,Q` . Denote by αp : (TK)Q` → Gm,Q` and

γλ : (TL)Q` → Gm,Q` the character obtained by projecting onto the corresponding factor. Note that {αp}p|`
and {γλ}λ|` are bases of X((TK)Q`) and X((TL)Q`), respectively.

The homomorphism ϕ : (TK)Q` → (TL)Q` is thus of the form

ϕ
(

(xp)p|`

)
=
(∏

p|`

x
np,λ
p

)
λ|`

for unique integers np,λ. In particular, we have

γλ ◦ ϕ =
∏
p|`

α
np,λ
p(5.1)

for all λ|`. The following lemma gives some constraints on the integers np,λ.

Lemma 5.10. Each integer np,λ is congruent modulo `− 1 to an integer that has absolute value at most 2g.

Proof. Take any prime ideal λ|` of OL. We have defined a representation βA,λ : GalK → L×λ . The image of
βA,λ is contained in Oλ since it is continuous and GalK is compact. By class field theory, we may view βA,λ
as a homomorphism IK → O×λ . By Proposition 5.7 and our choice of `, we have βA,`(π`(u)) = ϕ(u)−1 for
all u ∈ TK(Q`)c. Therefore, βA,λ(π`(u)) = γλ(ϕ(u)−1) =

∏
p|` αp(u)−np,λ holds for all u ∈ TK(Q`)c.

Now fix a prime ideal p|` of OK . Define the homomorphism

β̃A,λ : O×p
i−→ IK

βA,λ−−−→ O×λ ,

where i : O×p ↪→ IK is the inclusion on the p-th term of IK and 1 elsewhere. We have

β̃A,λ(a) = a−np,λ

for all a ∈ O×p ; note that this does makes sense because ` splits completely in K and L and hence O×p = Z×`
and O×λ = Z×` . For an inertia subgroup Ip of GalK at the prime p, class field theory now implies that

βA,λ(σ) = χ`(σ)−np,λ holds for all σ ∈ Ip, where χ` : GalK → Z×` is the `-adic cyclotomic character. By

Lemma 5.5 and using that F×λ = F×` is cyclic, we deduce that −np,λ is congruent modulo `− 1 to an integer
0 ≤ b ≤ 2g. �
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We now prove Lemma 5.8 (in the case where L is a field). Set d := [K : Q] and e := [L : Q].
Let σ1, . . . , σd : K ↪→ Q be the d distinct embeddings of K. Each σi extends to a homomorphism K⊗QQ→

Q of Q-algebras and defines a character αi ∈ X(TK) = Hom((TK)Q,Gm,Q). Observe that X(TK) is a free

abelian group of rank d with basis α1, . . . , αd. The natural GalQ-action on X(TK) permutes the characters
α1, . . . , αd.

Let τ1, . . . , τe : L ↪→ Q be the e distinct embeddings of L. As above, each τi determines a character
γi ∈ X(TL). The group X(TL) is free abelian of rank e with basis γ1, . . . , γe. The natural GalQ-action on
X(TL) permutes the characters γ1, . . . , γe.

We have ϕ(TK) ⊆ TL. So for each 1 ≤ j ≤ e, we have

γj ◦ ϕ =

d∏
i=1

α
ni,j
i(5.2)

for unique integers ni,j .

A fixed embedding Q ↪→ Q` induces isomorphisms X(TK) = X((TK)Q`) and X(TL) = X((TL)Q`).
Observe that under these isomorphisms, we have {αp : p|`} = {α1, . . . , αd} and {γλ : λ|`} = {γ1, . . . , γe}. By
comparing (5.1) and (5.2), we deduce that each ni,j is equal to some np,λ. By Lemma 5.10, ni,j is congruent
modulo `− 1 to an integer that has absolute value at most 2g.

By the Chebotarev density theorem, there are infinitely many primes ` ≥ 5 that splits completely in the
number fields K and L and are not divisible by any prime for which A has bad reduction. Since ni,j is congru-
ent modulo `−1 to an integer with absolute value at most 2g for infinitely many `, we deduce that |ni,j | ≤ 2g.

We now consider the general case where L need not be a field. For each 1 ≤ i ≤ s, let ϕi : TK → TLi be
the homomorphism ϕ from §5.4 for the abelian variety Ai. Observe that ϕ : TK → TL =

∏s
i=1 TLi is given by

(ϕ1, . . . , ϕs); one way to show this is to note the Proposition 5.7 characterizes ϕ and that βA,` =
∏s
i=1 βAi,`.

From the case of Lemma 5.8 we have already proved, we find that there is a basis α1, . . . , αd of X(TK)

such that for all 1 ≤ i ≤ s, we have γi,j ◦ ϕi =
∏d
k=1 α

ni,j,k
k , where γi,1, . . . , γi,[Li:Q] is a basis of X(TLi)

and ni,j,k is an integer with absolute value at most 2g. Moreover, the bases α1, . . . , αd and γi,1, . . . , γi,[Li:Q]

are stable under the natural GalQ-action. Lemma 5.8 now follows immediately with the basis α1, . . . , αd for
X(T ) and {γi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ [Li : Q]} for X(TL) = ⊕si=1X(TLi).

5.6. Proof of Theorem 5.3.

Lemma 5.11.

(i) We have ϕ(TK) = Y .
(ii) For any prime `, we have [Y (Q`)c : βA,`(GalK)]�g [Y (Q`)c : ϕ(TK(Q`)c)].

Proof. Take the open subgroup U ⊆ TK(Q`)c as in Proposition 5.7. We have

βA,`(π`(U)) = ϕ(U)−1 = ϕ(U).

The set U is Zariski dense in (TK)Q` and ϕ(U) = βA,`(π`(U)) ⊆ Y (Q`), so ϕ((TK)Q`) ⊆ YQ` . Therefore,
ϕ(TK) ⊆ Y .

We now prove ϕ(TK) = Y . Let ψ : GalK → Y (Q`)/ϕ(TK)(Q`) be the homomorphism obtained by
composing βA,` with the obvious quotient map. By Lemma 5.1, there is a finite extension F/K such that
ψ|GalF is unramified at all prime ideals p - ` of OF . Since ϕ(U) ⊆ ϕ(TK)(Q`) and [TK(Q`)c : U ] �g 1, we
deduce, after possibly replacing F by a finite extension, that ψ|GalF is unramified at all prime ideals p of OF .
Therefore, ψ has finite image and hence ψ|GalF = 1 for some finite extension F/K. For such a finite extension
F/K, we have βA,`(GalF ) ⊆ ϕ(TK)(Q`). The group βA,`(GalF ) is Zariski dense in YQ` by Proposition 5.2
and using that Y is connected. So ϕ(TK)(Q`) is Zariski dense in YQ` . Therefore, ϕ(TK)Q` = YQ` and hence
ϕ(TK) = Y as desired.

Finally, we have

[Y (Q`)c : βA,`(GalK)] ≤ [Y (Q`)c : βA,`(π`(U))] = [Y (Q`)c : ϕ(U)].�g [Y (Q`)c : ϕ(T (Q`)c)],

where the last inequality uses that [T (Q`)c : U ]�g 1. �
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Take any prime `. Let ρ : GalQ` → AutZ(X((TK)Q`)) be the Galois action on the character group of the

torus (TK)Q` . Let F ′ be the subfield of Q` fixed by ker ρ. Let F/Q` be any subfield of F ′ for which the
extension F/Q` is Galois and the extension F ′/F is unramified. Define the integer

e := [F : Q`] · [Y (F )c : ϕ(TK(F )c)],

where Y (F )c and TK(F )c are the maximal compact subgroups of Y (F ) and TK(F ), respectively, with respect
to the m-adic topology.

Lemma 5.12. We have ye ∈ ϕ(TK(Q`)c) for each y ∈ Y (Q`)c.

Proof. Take any y ∈ Y (Q`)c. We have yn = ϕ(t) for some t ∈ TK(F )c, where n := [Y (F )c : ϕ(TK(F )c)].
Since y and ϕ are defined over Q`, we have yn = ϕ(σ(t)) for all σ ∈ Gal(F/Q`). Therefore, ye = y[F :Q]n =
ϕ(t′) for t′ :=

∏
σ∈Gal(F/Q`) σ(t). We have t′ ∈ TK(Q`) since it stable under the Gal(F/Q`)-action.

Each σ ∈ Gal(F/Q`) is a continuous automorphism of F and hence σ(t) ∈ TK(F )c. Therefore, t′ ∈
TK(F )c ∩ TK(Q`) = TK(Q`)c. �

Lemma 5.13. We have [Y (Q`)c : ϕ(T (Q`)c)] ≤ [Y (Q`) : γ(Y (Q`))], where γ : Y → Y is the e-th power
map.

Proof. Let γ : Y → Y be the e-th power map; it is an isogeny. We have a quotient homomorphism

Y (Q`)c/γ(Y (Q`)c)→ Y (Q`)/γ(Y (Q`)).(5.3)

We claim that (5.3) is injective. Take any y ∈ Y (Q`)c for which y = xe for some x ∈ Y (Q`). Let G be
the group generated by x and Y (Q`)c. Since xe ∈ Y (Q`)c, we find that Y (Q`)c is a finite index subgroup of
G and hence G is compact. We have G = Y (Q`)c since Y (Q`)c is the maximal compact subgroup of Y (Q`).
Therefore, x ∈ Y (Q`)c which finishes the proof of the claim.

By the injectivity of (5.3), we have [Y (Q`)c : γ(Y (Q`)c)] ≤ [Y (Q`) : γ(Y (Q`))]. The lemma is now a
consequence of Lemma 5.12 which says that ϕ(T (Q`)c) ⊇ γ(Y (Q`)c). �

Let γ : Y → Y be the e-th power map. The map γ is an isogeny and hence Z := ker γ is a finite

group scheme. Starting with the short exact sequence 1 → Z(Q`) → Y (Q`)
γ−→ Y (Q`) → 1 and taking

Galois cohomology gives an injective homomorphism Y (Q`)/γ(Y (Q`)) ↪→ H1(GalQ` , Z(Q`)). This injective
homomorphism and Lemma 5.13 implies that

[Y (Q`)c : ϕ(T (Q`)c)] ≤ |H1(GalQ` , Z(Q`))|.(5.4)

Lemma 5.14. Let H be a finite abelian group with a GalQ`-action. Then the cardinality of H1(GalQ` , H)
can be bounded in terms of |H|.

Proof. Set n = |H| and G := GalQ` . There is an open normal subgroup N ⊆ G of index at most n! that acts
trivially on H. We have an inflation-restriction exact sequence

0→ H1(G/N,HN )→ H1(G,H)→ H1(N,H)

The cardinality of H1(G/N,HN ) can be bounded in terms of |G/N | ≤ n! and |HN | ≤ n. So it suffices to
bound H1(N,H) which is the group of continuous homomorphisms N → H since N acts trivially on H.

Let K be the extension of Q` corresponding to the subgroup N of G. By local class field theory, we
can idenitify H1(N,H) with Hom(K×/(K×)n, H). The lemma follows by noting that the cardinality of
K×/(K×)n can be bounded in terms of n and [K : Q`] ≤ n!. �

The group scheme Z is finite with cardinality edimY . Since dimY ≤ 2g, Lemma 5.14 and (5.4) imply that
[Y (Q`)c : ϕ(T (Q`)c)]�g,e 1.

Lemma 5.15. We have [Y (F )c : ϕ(TK(F )c)]�g 1.

Proof. Let R be the ring of integers of F and denote its maximal ideal by m. Define the residue field F = R/m
and denote its cardinality by q. Let F un be the maximal unramified extension of F in F .

We now consider algebraic group schemes of multiplicative type; for background, see [Con14, Appendix
B]. The category of algebraic group schemes over R of multiplicative type is equivalent to the category of
algebraic group schemes over F of multiplicative type for which the action of GalF on the character group is
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unramified. This can be seen by noting that both are anti-equivalent to the category of discrete Gal(F un/F )-
modules that are finitely generated abelian groups, see [Con14, Corollary B.3.6]. Explicitly, the equivalence
is given by base extension by F .

Let H be a torus over R. The group H(F ) has a natural m-adic topology. Observe that H(R) agrees with
the maximal compact subgroup H(F )c of H(F ) with respect to the m-adic topology (one can prove this by
extending R to reduce to the split case). One can use the smoothness of H and Hensel’s lemma to show
that H(R/mn+1) → H(R/mn) is surjective with kernel isomorphic to FdimHF ; in particular, the kernel has
cardinality qdimHF . Therefore, |H(R/mn)| = |H(F)| · q(n−1) dimHF for all n ≥ 1.

Define W := ker(ϕ) ⊆ TK and B := W/W ◦. The group scheme B is finite and denote it cardinality by
m. By Lemma 5.9, we have m�g 1.

By our choice of F , the action of GalF on X((TK)F )) is unramified, i.e., factors through Gal(F un/F ).
The actions of GalF on X(WF ) and X(YF ) are also unramified since they can be viewed as a quotient and
subgroup, respectively, of X((TK)F ) stable under the GalF action. So there are short exact sequences

1→W ι−→ T ψ−→ Y → 1 and 1→W0 →W → B → 1

of R-groups of multiplicative type such that base extension by F gives rise to the short exact sequences

1→WF ↪→ (TK)F
ϕ−→ YF → 1 and 1→W ◦F ↪→WF → BF → 1.

We have Y(R) = Y (F )c and T (R) = TK(F )c, and hence [Y(R) : ψ(T (R))] = [Y (F )c : ϕ(TK(F )c)]. So it
suffices to prove that [Y(R) : ψ(T (R))] �g 1. Since ψ(T (R)) is a closed subgroup of Y(R) in the m-adic
topology, it suffices to prove that [Y(R/mn) : ψ(T (R/mn))]�g 1 holds for all n ≥ 1.

First suppose that n > 1. We have |Y(R/mn)| = |Y(F)| · q(n−1) dimY and

|ψ(T (R/mn))| = |T (R/mn)|
|W(R/mn)|

≥ 1

m

|T (R/mn)|
|W0(R/mn)|

�g
|T (F)| · q(n−1) dimTK

|W0(F)| · q(n−1) dimW0

≥ |T (F)|
|W(F)|

· q(n−1)(dimTK−dimW ).

Using that dimY = dimTK − dimW , we have

[Y(R/mn) : ψ(T (R/mn))]�g |Y(F)|/(|T (F)|/|W(F)|) = [Y(F) : ψ(T (F))].

So it suffices to prove the n = 1 case, i.e., show that [Y(F) : ψ(T (F))]�g 1.

From the short exact sequence 1 → W(F) → T (F)
ψ−→ Y(F) → 1, taking Galois cohomology gives an

injective homomorphism Y(F)/ψ(T (F)) ↪→ H1(GalF,W(F)). From the short exact sequence 1 → W0(F) →
W(F) → B(F) → 1, we have an exact sequence H1(GalF,W0(F)) → H1(GalF,W(F)) → H1(GalF,B(F)).
Since (W0)F is connected, Lang’s theorem implies that H1(GalF,W0(F)) = 0 and hence

[Y(F) : ψ(T (F))] ≤ |H1(GalF,W(F))| ≤ |H1(GalF,B(F))|.

Since B(F) is a finite group of cardinality at mostm�g 1 and GalF is pro-cyclic, we have |H1(GalF,B(F))| �g

1 and hence [Y(F) : ψ(T (F))]�g 1. �

Since [Y (Q`)c : ϕ(T (Q`)c)] �g,e 1, Lemma 5.15 implies that [Y (Q`)c : ϕ(T (Q`)c)] �g,[F :Q`] 1. If ` is
unramified in K, then we can choose F = Q` and hence [Y (Q`) : ϕ(T (Q`)c)]�g 1. This proves part (i).

To prove part (ii), it suffices to show that [F : Q`]�[K:Q] 1. By Lemma 5.8, there is a basis α1, . . . , α[K:Q]

of X((TK)Q`) that is permuted by the natural GalQ` -action. Therefore, [F : Q`] ≤ [K : Q]!.
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6. Proof of Theorem 1.2(a) and (b)

By Lemma 2.13, we may assume the groups GA,` are all connected.
Fix a prime ` ≥ c ·max({[K : Q], h(A), N(q)})γ . We have already proved part (c) of Theorem 1.2 in §4, so

by increasing the constants c and γ appropriately, we may assume that Z`-group scheme GA,` is reductive.
Let SA,` be the derived subgroup of GA,`; it is a semisimple group scheme over Z`. We have proved part
(d) of Theorem 1.2 in §4, so by increasing the constants c and γ appropriately, we may also assume that
ρA,`(GalK) contains the commutator subgroup GA,`(Z`)′ of GA,`(Z`). In particular, ρA,`(GalK) ⊇ SA,`(Z`)′.

Define S = (SA,`)Q` ; it is the derived subgroup of the connected reductive group GA,`.
With notation as in §5.2 and Proposition 5.2, there is a homomorphism

δ := detL : GA,` → YQ`

of algebraic groups over Q`, where Y is a torus defined over Q. Define H := ker(δ).

Lemma 6.1. We have H◦ = S and the cardinality of the group scheme H/S can be bounded in terms of g.

Proof. We have H ⊇ S since S is semisimple and YQ` is a torus. It thus suffices to show that the kernel
of δ|C = detL |C is finite with cardinality bounded in terms of g, where C is the central torus of GA,`. By
Proposition 2.12, C = (CA)Q` where CA is the central torus of MTA. As noted in §5.2, the homomorphism
detL |CA : CA → Y is an isogeny of degree d1 · · · ds �g 1. �

Define the homomorphism βA,` : GalK → Y (Q`) by βA,` = detL ◦ρA,`. We have βA,`(GalK) ⊆ Y (Q`)c,
where Y (Q`)c is the maximal compact subgroup of Y (Q`) with respect to the `-adic topology.

We have inequalities

[GA,`(Z`) : ρA,`(GalK)] = [detL(GA,`(Z`)) : detL(ρA,`(GalK))] · [H(Q`) ∩ GA,`(Z`) : H(Q`) ∩ ρA,`(GalK)]

≤ [Y (Q`)c : βA,`(GalK)] · [H(Q`) ∩ GA,`(Z`) : H(Q`) ∩ ρA,`(GalK)]

�g [Y (Q`)c : βA,`(GalK)] · [S(Q`) ∩ GA,`(Z`) : S(Q`) ∩ ρA,`(GalK)],

where we have used Lemma 6.1 in the last inequality and we have also used that detL(GA,`(Z`)) is a compact
subgroup of Y (Q`). We have

[S(Q`) ∩ GA,`(Z`) : S(Q`) ∩ ρA,`(GalK)] = [SA,`(Z`) : SA,`(Z`) ∩ ρA,`(GalK)]

≤ [SA,`(Z`) : SA,`(Z`)′]
�g 1,

where the last inequality uses Proposition 4.25(iii). Combining our inequalities, we find that

[GA,`(Z`) : ρA,`(GalK)]�g [Y (Q`)c : βA,`(GalK)].

Theorem 1.2(a) and (b) now follow from Theorem 5.3.

7. Proof of Theorem 1.4

We first give a slight generalization of Theorem 1.2.

Theorem 7.1. The conclusion of Theorem 1.2 holds with (1.1) replaced by the assumption that ` ≥ c ·
max({[K : Q], h(A)})γ and ` - n, where n is a positive integer satisfying n < cN(q)γ that depends on A.

Proof. There are only two times in the proof of Theorem 1.2 that we used the assumption

` ≥ cN(q)γ .(7.1)

In §4.1, we used (7.1) to prove that q - ` and that ` does not divide a specific non-zero integer D that satisfies
|D| < cN(q)γ . In §4.5, we used (7.1) to prove that q - ` and that ` does not divide non-zero integers βM
satisfying |βM | < cN(q)γ , where M lie in a set M with |M| �g 1.

The theorem thus holds with n := N(q) · |D| ·
∏
M∈M |βM | after possibly increasing the constants c and

γ so that n < cN(q)γ . �

By the same arguments as in the proof of Lemma 2.13, we may assume that all the groups GA,` are
connected; note that the integer D is unchanged if we replace A/K with AKconn

A
/Kconn

A .
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Lemma 7.2. Let ` be a prime for which GA,` is reductive. For each maximal torus T of G, there is a subset
UT ⊆ T (F`) such that the following conditions hold:

(a) Let p - ` be a non-zero prime ideal of OK for which A has good reduction. If ρA,`(Frobp) is conjugate
in G(F`) to an element of T (F`)− UT , then ΦA,p ∼= Zr.

(b) We have |UT | �g `
r−1.

(c) For any h ∈ G(F`) and maximal torus T of G, we have UhTh−1 = hUTh
−1.

Proof. Fix a maximal torus T of G. Let α1, . . . , α2g ∈ X(T ) be the weights of T ⊆ GLA[`], with multiplicity,

acting on A[`]. Let M ⊆ Z2g be the group consisting of e ∈ Z2g satisfying
∏2g
i=1 α

ei
i = 1. By Theorem 4.5 and

Lemma 4.19, there are only finite many possibilities for M in terms of g. Note that we have an isomorphism
X(T ) ∼= Z2g/M ; in particular, Z2g/M is a free abelian group of rank r. Define the finite set

A := {m ∈ Z2g −M : max
i
|mi| ≤ C},

where C is a positive constant depending only on g that we will later impose an additional condition on. For
each m ∈ Z2g, define the character βm :=

∏2g
i=1 α

mi
i ∈ X(T ). We have βm 6= 1 for each m ∈ A since m /∈M .

Define Y := ∪m∈A kerβm. The set of characters {βm : m ∈ A } ⊆ X(T ) is stable under the action of GalF`
since α1, . . . , α2g is stable under this Galois action. We may thus view Y as a subvariety of T defined over
F`. Define the subset UT := Y (F`) of T (F`). Note that while M and A depend on our choice of ordering
α1, . . . , α2g of weights, the set UT does not.

We now prove (a). Take any prime p - ` for which A has good reduction and ρA,`(Frobp) is conjugate in
G(F`) to an element of T (F`)− UT . We may assume that tp := ρA,`(Frobp) lies in T (F`)− U . The roots of

PA,p(x) modulo `, with multiplicity, are α1(tp), . . . , α2g(tp) ∈ F`. Let R be the ring of integers of a splitting
field F/Q` of PA,p(x). Let π1, . . . , π2g ∈ R be the roots of PA,p(x) with multiplicity; note that each πi lies

in R since it is an algebraic integer in F . Let F be the residue field of R. Let π1, . . . , π2g ∈ F` be the values

obtained by reducing each πi and then applying a fixed embedding F ↪→ F`. By rearranging the πi, we may
assume that πi = αi(tp) holds for all 1 ≤ i ≤ 2g. Let Mp be the group of e ∈ Z2g that satisfy

∏2g
i=1 π

ei
i = 1.

By Proposition 2.6, Mp is one of a finite number of subgroups of Z2g that depend on g.
We claim that Mp ⊆ M . Suppose to the contrary that there is an m ∈ Mp −M . We may assume that

maxi |mi| ≤ C, where C is our constant depending only on g; we can take m to be in a fixed finite set of

generators for each of the groups Mi from Proposition 2.6. We have (
∏2g
i=1 α

mi)(tp) = 1 since m ∈ Mp. In

particular, by our choice of C, there is an m ∈ A such that βm(tp) = 1. Therefore, tp ∈ T (F`) ∩ Y (F`) =
Y (F`) = UT . However, this is a contradiction since we assumed that tp ∈ T (F`)−UT . This proves the claim.

Since Mp ⊆ M , we have a surjective homomorphism ΦA,p ∼= Z2g/Mp → Z2g/M ∼= Zr. Let Tp be the
Zariski closure in GA,` of the subgroup generated by the semisimple element ρA,`(Frobp). As explained
in the proof of Lemma 2.7, we have X(Tp) ∼= ΦA,p. We thus have X(T ◦p ) = ΦA,p/(ΦA,p)tors, where the
neutral component T ◦p is a torus and (ΦA,p)tors is the torsion subgroup of ΦA,p. Since there is a surjective
homomorphism ΦA,p � Zr, the torus T ◦p has dimension at least r. Since T ◦p is contained in the reductive
group GA,` of rank r, we find that T ◦p is a maximal torus of GA,` and has dimension r. We have Tp = T ◦p
since a maximal torus of a connected reductive group is its own centralizer. So ΦA,p ∼= X(Tp) is a free
abelian group of rank r. This completes the proof of (a).

We now prove (b). Since |A | �g 1, to verify |UT | �g `
r−1 it suffices to prove that |{t ∈ T (F`) : βm(t) =

1}| �g `r−1 for each m ∈ A . Take any m ∈ A . Let F`d/F` be the smallest extension over which T
splits; the character βm is defined over F`d . We have d �g 1. For t ∈ T (F`) satisfying βm(t) = 1, we have
σ(βm)(t) = σ(βm(t)) = σ(1) = 1 for all σ ∈ Gal(F`d/F`). Define W :=

⋂
σ∈Gal(F

`d
/F`) kerσ(βm); it is a

subvariety of T defined over F` that contains all t ∈ T (F`) satisfying βm(t) = 1. So to verify |UT | �g `
r−1

it suffices to prove that |W (F`)| �g `
r−1. For any σ ∈ Gal(F`d/F`), σ permutes the characters α1, . . . , α2g

(with multiplicity) and hence there is an mσ ∈ A satisfying σ(βm) = βmσ . The algebraic group W is
diagonalizable (over F`d) and

X(W ) ∼= Z2g/
(
M +

∑
σ∈Gal(F

`d
/F`)

Zmσ

)
There are only finitely many possibilities (in terms of g) for the group X(W ) since d �g 1 and since there
are only finitely many possibilities (in terms of g) for M and each mσ. In particular, the torsion subgroup
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of X(W ) can be bounded in terms of g and hence |(W/W ◦)(F`)| �g 1. Therefore, |W (F`)| �g |W ◦(F`)| �g

`r−1, where the last inequality uses that W ◦ is a torus over F` of rank at most r − 1 and r can be bounded
in terms of g. We deduce that |UT | �g `

r−1.
It remains to prove (c). Take any h ∈ G(F`) and define the maximal torus T ′ := hTh−1 of G. We have

an isomorphism ι : T ′ → T , t 7→ h−1th of tori and an isomorphism X(T )→ X(T ′), α 7→ α ◦ ι of groups that
respects the GalF`-actions. For 1 ≤ i ≤ 2g, define α′i := αi ◦ ι. Observe that α′1, . . . , α

′
2g are the weights,

with multiplicity, of T ′ acting on A[`]. The group M is also the group consisting of e ∈ Z2g satisfying∏2g
i=1(α′i)

ei = 1. So we have the same set A when defining UT ′ (with our ordering of weights α′1, . . . , α
′
2g).

For each m ∈ Z2g, define the character β′m :=
∏2g
i=1(α′i)

mi of T ′. Note that β′m = βm ◦ ι for all m ∈ Z2g. For
any t ∈ T (F`), we have

t ∈ UT ⇐⇒ βm(t) = 1 for some m ∈ A ⇐⇒ β′m(hth−1) = 1 for some m ∈ A ⇐⇒ hth−1 ∈ UT ′ .

Since ι induces an isomorphism T ′(F`)→ T (F`), we have UT ′ = hUTh
−1. �

Lemma 7.3. Let ` be a prime for which GA,` is reductive. There is a subset B` of GA,`(F`) stable under
conjugation satisfying |B`|/|GA,`(F`)| = 1 +Og(1/`) such that if p - ` is a prime ideal of OK for which A has
good reduction and ρA,`(Frobp) ∈ B`, then ΦA,p is a free abelian group of rank r.

Proof. The group G := (GA,`)F` is connected and reductive. Let B` be the set of elements in G(F`)−
⋃
T UT

that are semisimple and regular in G, where the union is over all maximal tori of G and the sets UT are as
in Lemma 7.2. Using property (c) of Lemma 7.2, we find that B` is stable under conjugation by G.

Take any prime ideal p - ` of OK for which A has good reduction and ρA,`(Frobp) ∈ B`. In particular,
ρA,`(Frobp) is conjugate in G(F`) to an element of T (F`)−UT for some maximal torus T of G. Property (a)
of Lemma 7.2 implies that ΦA,p ∼= Zr.

It remains to prove that |B`|/|GA,`(F`)| = 1 + Og(1/`). Let G(F`)rs be the set of elements in G(F`) that
are regular and semisimple in G. For each maximal torus T of G, define T (F`)rs = T (F`)∩G(F`)rs. We have
|G(F`)rs| = |G(F`)|(1 + Og(1/`)) and |T (F`)rs| = `r + Og(`

r−1) for any maximal torus T of G by the proof
of Lemma 4.5 of [JKZ13]; note that the proof of this lemma only uses that G/F` is reductive and there are
only a finite number of possibilities, in terms of g, for the Lie type of G.

Every element of G(F`) that is regular and semisimple element in G lies in a unique maximal torus. We
thus have a disjoint union B` =

⋃
T

(
T (F`)rs − UT

)
, with the union being over all maximal tori T of G.

Therefore,

|B`| ≥
∑
T

(
|T (F`)rs| − |UT |

)
=
∑
T

`r · (1 +Og(1/`)),

where we have used property (b) of Lemma 7.2. We also have a disjoint union G(F`)rs =
⋃
T T (F`)rs

and hence |G(F`)rs| =
∑
T `

r · (1 + Og(1/`)). Since |G(F`)rs| = |G(F`)|(1 + Og(1/`)), we have inequalities
|G(F`)| ≥ |B`| ≥ |G(F`)|(1 +Og(1/`)). Therefore, |B`|/|GA,`(F`)| = 1 +Og(1/`). �

Let q be a non-zero prime ideal of OK for which A has good reduction and ΦA,q is a free abelian group
of rank r. We can assume that q is chosen so that N(q) is minimal. We have D =

∏
p∈V p, where V is the

set of primes p that ramify in K or are divisible by a prime ideal for which A has bad reduction.

By Theorem 7.1, there are positive constants c and γ, depending only on g, and a positive integer
n < cN(q)γ such that for all primes ` - nD satisfying ` ≥ c ·max({[K : Q], h(A)})γ , we have

[GA,`(Z`) : ρA,`(GalK)]�g 1

and the Z`-group scheme GA,` is reductive.

Lemma 7.4. Let ` - nD be a prime satisfying ` ≥ c · max({[K : Q], h(A)})γ . There is a subset C` of
ρA,`(GalK) that is stable under conjugation such that the following hold:

(a) if p - ` is a prime ideal of OK for which A has good reduction and ρA,`(Frobp) ∈ C`, then ΦA,p is a
free abelian group of rank r.

(b) |C`|/|ρA,`(GalK)| = 1 +Og(1/`).
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Proof. Take any prime ` - nD satisfying ` ≥ c ·max({[K : Q], h(A)})γ . From above, we know that GA,` is
reductive and [GA,`(Z`) : ρA,`(GalK)] �g 1. Let B` be the set of elements in GA,`(F`) as in Lemma 7.3.
Define C` := ρA,`(GalK) ∩ B`; it is stable under conjugation by ρA,`(GalK). Take any prime ideal p - ` of
OK for which A has good reduction and ρA,`(Frobp) ∈ C`. Since ρA,`(Frobp) ∈ B`, the group ΦA,p is free
abelian of rank r. This proves part (a).

We have ρA,`(GalK)− C` ⊆ GA,`(F`)− B` and hence

|ρA,`(GalK)− C`| ≤ |GA,`(F`)− B`| = |GA,`(F`)|(1− |B`|/|GA,`(F`)|)�g |GA,`(F`)|/`,

where the last inequality uses that |B`|/|GA,`(F`)| = 1 + Og(1/`). Using that [GA,`(F`) : ρA,`(GalK)] ≤
[GA,`(Z`) : ρA,`(GalK)]�g 1, we deduce that

|ρA,`(GalK)| − |C`| = |ρA,`(GalK)− C`| �g |ρA,`(GalK)|/`.

Part (b) follows by dividing by |ρA,`(GalK)|. �

Proposition 7.5. Take any prime ` - nD satisfying ` ≥ c ·max({[K : Q], h(A)})γ . After possibly increasing
the constant c, that depends only on g, we have N(q) �g (max{`, [K : Q], logD})e, where e ≥ 1 depends
only on g.

Proof. Take any prime ` - nD satisfying ` ≥ c ·max({[K : Q], h(A)})γ . Define the group G := ρA,`(GalK)

and the field L := K(A[`]). Note that L is the subfield of K fixed by ker ρA,`. Let C` ⊆ G be the set from
Lemma 7.4. By increasing the constant c, that only depends on g, we may assume that |C`|/|G| ≥ 1/2.

Let πC`(x) be the set of non-zero prime ideals p ofOK that are unramified in L and satisfy ρA,`(Frobp) ∈ C`.
An effective version of the Chebotarev density theorem (Théorème 4 and Remark (20R) of [Ser81] along with
the trivial bound |C`| ≤ [L : K]) implies that∣∣∣πC`(x)− |C`|

|G|
Li(x)

∣∣∣� [L : K]x1/2
(

log x+ log[L : Q] + [K : Q]−1 log dK +
∑

p∈P (L/K)

log p
)
,

where Li(x) =
∫ x

2
(log t)−1 dt, dK is the absolute value of the discriminant of K, and P (L/K) is the set of

primes p that are divisible by some prime ideal of OK that ramifies in L. Note that this version of the
Chebotarev density theorem uses our GRH assumption. By [Ser81, Proposition 6], we have

[K : Q]−1 log dK ≤
∑

p∈P (K)

log p+ |P (K)| log[K : Q]� (log[K : Q] + 1)
∑

p∈P (K)

log p,

where P (K) is the set of primes p that ramify in K. Since P (K) ∪ P (L/K) ⊆ V ∪ {`}, we have∣∣∣πC`(x)− |C`|
|G|

Li(x)
∣∣∣� [L : Q]x1/2

(
log x+ log[L : Q] + (log[K : Q] + 1)(

∑
p∈V

log p+ log `)
)
.

Since [L : K] ≤ |GL2g(F`)| ≤ `4g
2

, we find that∣∣∣πC`(x)− |C`|
|G|

Li(x)
∣∣∣�g `

4g2+1[K : Q]2x1/2
(

log x+
∑

p∈V
log p

)
and hence

πC`(x) ≥ 1

2
Li(x) +Og

(
`4g

2+1[K : Q]2x1/2(log x+ logD)
)
.

So there is an e ≥ 2, depending only on g, such that if max{`, [K : Q], logD} � x1/e, then πC`(x) ≥
1
2 Li(x) + Og(x

9/10). Thus for x �g (max{`, [K : Q], logD})e, we will have πC`(x) ≥ 1
4 Li(x) and also

1
4 Li(x) ≥ 2[K : Q](logD + 1) + 1 after possibly increasing e (which depends only on g). Therefore, for
x �g (max{`, [K : Q], logD})e, we have πC`(x) ≥ 2[K : Q](logD + 1) + 1 and hence πC`(x) is strictly
larger than the number of prime ideals p of OK dividing D`. So there is a non-zero prime ideal p - D` with
N(p)�g (max{`, [K : Q], logD})e for which ρA,`(Frobp) ∈ C`. The abelian variety A has good reduction at
p since p - D. By Lemma 7.4, ΦA,p is a free abelian group of rank r. By the minimality of our choice of q,
we have N(q) ≤ N(p)�g (max{`, [K : Q], logD})e. �
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We have ∑
`|nD

log ` ≤ log n+ logD ≤ log(cN(q)γ) + logD = γ logN(q) + log c+ logD

Define C := c ·max({[K : Q], h(A)})γ . By the prime number theorem, there is an absolute constant m ≥ 2
such that for all Q ≥ mC, we have ∑

C≤`≤Q

log ` ≥ Q/2

So with Q := 4 max{mC, γ logN(q) + log c+ logD}, we have∑
C≤`≤Q

log ` ≥ 2 max{mC, γ logN(q) + log c+ logD} > γ logN(q) + log c+ logD ≥
∑
`|nD

log `.

From
∑
C≤`≤Q log ` >

∑
`|nD log `, we deduce that there is a prime C ≤ ` ≤ Q with ` - nD. By Proposi-

tion 7.5, we have

N(q)�g (max{Q, [K : Q], logD})e

�g (max{C, logN(q), [K : Q], logD})e

�g (max{logN(q), [K : Q], h(A), logD})f ,

where e ≥ 1 and f ≥ 1 depend only on g. If logN(q) ≤ max{[K : Q], h(A), logD}, then

N(q)�g (max{[K : Q], h(A), logD})f .(7.2)

Now suppose that logN(q) > max{[K : Q], h(A), logD} and hence N(q) �g (logN(q))f . Since f depends
only on g, we have N(q)�g 1 and hence (7.2) holds as well.

Theorem 1.4 is now a direct consequence of Theorem 1.2 and the upper bound (7.2) for N(q).

8. Proof of Corollary 1.6

Take any prime ` ≥ c ·max({[K : Q], h(A), N(q)})γ that is unramified in K, where c and γ are constants
as in Theorem 1.2. After possibly increasing the constants c and γ, that depend only on g, Théorème 1.1 of
[GR14] implies that A has a polarization defined over K whose degree is not divisible by `. This polarization
gives rise to an isogeny ϕ : A→ A∨ whose degree is not divisible by `, where A∨ is the dual abelian variety of
A. Combining the Weil pairing of A with ϕ gives rise to a non-degenerate skew-symmetric form of Z`-modules

e` : T`(A)× T`(A)
id×ϕ−−−→ T`(A)× T`(A∨)→ Z`(1) ∼= Z`

such that e`(σ(P ), σ(Q)) = χ`(σ)e`(P,Q) for all P,Q ∈ T`(A) and σ ∈ GalK , where χ` : GalK → Z×` is the
`-adic cyclotomic character. We thus have

ρA,` : GalK → GSp(T`(A), e`) ∼= GSp2g(Z`),(8.1)

where the last isomorphism depends on a suitable choice of a Z`-basis of T`(A). We have χ`(GalK) = Z×`
since ` is unramified in K. So to prove that ρA,`(GalK) = GSp2g(Z`) it suffices to show that ρA,`(GalK) ⊇
Sp2g(Z`).

From (8.1), we may identify GA,` with a closed subgroup of GSp2g,Q` .

Lemma 8.1. We have GA,` = GSp2g,Q` .

Proof. We have GA,` ⊆ GSp2g,Q` and hence the rank r of G◦A,` is at most g + 1, i.e., the rank of GSp2g,Q` .
By assumption, we have a prime ideal q ⊆ OK for which A has good reduction and for which the group ΦA,q
is free abelian of rank g + 1. By Lemma 2.7(i), we have g + 1 ≤ r. Therefore, r = g + 1.

Our assumption End(AK) = Z and Proposition 2.3(iii) implies that the commutant ofG◦A,` in EndQ`(V`(A))

agrees with the scalar endomorphisms Q`. The commutant of GSp2g,Q` in EndQ`(V`(A)) is also Q`. By
Lemma 4.6, we deduce that G◦A,` = GSp2g,Q` and hence GA,` = GSp2g,Q` �
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By Lemma 8.1 and (8.1), we have GA,` = GSp2g,Z` . By Theorem 1.2(d), we have

ρA,`(GalK) ⊇ GSp2g(Z`)′ ⊇ Sp2g(Z`)′.

It remains to prove that Sp2g(Z`)′ = Sp2g(Z`).
With notation as in §4.6, we have SA,` = Sp2g,Z` . By Proposition 4.25(i) and Lemma 4.22, with appropri-

ate c and γ, it suffices to show that SA,`(F`) = Sp2g(F`) is generated by elements of order `. This is indeed
true; moreover, Sp2g(F`) is generated by symplectic transvections.
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