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Abstract. Let E be an elliptic curve over the rationals that does not have complex multi-
plication. For each prime `, the action of the absolute Galois group on the `-torsion points
of E can be given in terms of a Galois representation ρE,` : Gal(Q/Q) → GL2(F`). An
important theorem of Serre says that ρE,` is surjective for all sufficiently large `. In this
paper, we describe a simple algorithm based on Serre’s proof that can quickly determine the
finite set of primes ` > 13 for which ρE,` is not surjective. We will also give some improved
bounds for Serre’s theorem.

1. Introduction

Let E be a non-CM elliptic curve defined over Q. For each prime `, let E[`] be the `-
torsion subgroup of E(Q), where Q is a fixed algebraic closure of Q. The group E[`] is an
F`-vector space of dimension 2 and there is a natural action of the absolute Galois group
GalQ := Gal(Q/Q) on E[`] which respects the group structure. After choosing a basis for
E[`], this action can be expressed in terms of a Galois representation

ρE,` : GalQ → GL2(F`).

A renowned theorem of Serre shows that ρE,` is surjective for all sufficiently large primes `,
cf. [Ser72].

Let c(E) be the smallest positive integer for which ρE,` is surjective for all primes ` > c(E).
Serre has asked whether the constant c(E) can be bounded independent of E [Ser72, §4.3],
and moreover whether c(E) ≤ 37 always holds [Ser81, p. 399]. We pose a slightly stronger
conjecture; first define the set of pairs

S :=
{

(17,−172 ·1013/2), (17,−17·3733/217), (37,−7·113), (37,−7·1373 ·20833)
}
.

Denote by jE the j-invariant of E/Q. When (`, jE) ∈ S , the curve E has an isogeny of
degree ` and hence ρE,` is not surjective, cf. [Zyw15] for a description of the image of ρE,`.

Conjecture 1.1. If E is a non-CM elliptic curve over Q and ` > 13 is a prime satisfying
(`, jE) /∈ S , then ρE,`(GalQ) = GL2(F`).

The main goal of this paper is to give a simple and practical algorithm to compute the
finite set of primes ` for which ρE,` is not surjective. We will focus on the case ` > 13 since
using [Sut16] or [Zyw15], we can easily compute the group ρE,`(GalQ), up to conjugacy in
GL2(F`), for all the primes ` ≤ 13.

We will also give improved upper bounds for c(E).
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Notation. For an elliptic curve E/Q, denote its j-invariant and conductor by jE and NE,
respectively. For each prime p for which E has good reduction, define the integer ap(E) =
|E(Fp)|− (p+ 1), where E(Fp) is the group of Fp-points of a good model at p. For each good
prime p 6= `, the representation ρE,` is unramified at p and satisfies tr(ρE,`(Frobp)) ≡ ap(E)
(mod `) and det(ρE,`(Frobp)) ≡ p (mod `), where Frobp ∈ GalQ is an (arithmetic) Frobenius
at p. For primes p for which E has bad reduction, we set ap(E) = 0, 1 or −1, if E has
additive, split multiplicative or non-split multiplicative reduction, respectively, at p. Let
vp : Q×p � Z be the valuation for the prime p.

1.1. An algorithm. Fix a non-CM elliptic curve E/Q. We now explain how to compute a
finite set S of primes such that ρE,` is surjective for all primes ` /∈ S.

Let q1 < · · · < qd be the primes q that satisfy one of the following conditions:

• q = 2 and vq(jE) is 3, 6 or 9,
• q ≥ 3 and vq(jE − 1728) is positive and odd.

We now consider odd primes p for which E has Kodaira symbol I0 or I∗0. For such a prime
p, E/Q or its quadratic twist by p has good reduction at p; denote this curve by Ep/Q.

Let p1 < p2 < p3 < p4 < . . . be the primes satisfying the following conditions:

• pi - 2q1 · · · qd,
• E has Kodaira symbol I0 or I∗0 at pi,
• ai := |api(Epi)| is non-zero.

Note that the set of primes pi has density 1, cf. [Ser81, Théorème 20].

For integers i ≥ 1 and 1 ≤ j ≤ d, define the following values in F2:

αi,j =

{
0 if qj is a square modulo pi,

1 otherwise,
and βi =

{
0 if −1 is a square modulo pi,

1 otherwise.

It is easy to compute αi,j and βi; with respect to the isomorphism F2
∼= {±1}, they are

simply Legendre symbols. For each integer m ≥ 1, let Am ∈ Mm,d(F2) be the m× d matrix
whose (i, j)-th entry is αi,j and let bm ∈ Fm2 be the column vector whose i-th entry is βi.

For m large enough, the linear equation Amx = bm has no solution. Indeed, by Dirichlet’s
theorem for primes in arithmetic progressions, there is an integer i0 ≥ 1 satisfying αi0,j = 0
for all 1 ≤ j ≤ d and βi0 = 1. So Amx = bm has no solutions for m ≥ i0.

Let r ≥ 1 be the smallest integer for which the linear equation Arx = br has no solution.
We define S to be the set of primes ` such that ` ≤ 13, (`, jE) ∈ S , or ai ≡ 0 (mod `) for
some 1 ≤ i ≤ r. The set S is finite since S is finite and each ai is non-zero. We will prove
the following in §3.

Theorem 1.2. The representation ρE,` is surjective for all primes ` /∈ S.

There are earlier results that produce an explicit finite set S that satisfies the conclusion
of Theorem 1.2. For example, the bounds of Kraus and Cojocaru mentioned in §1.3 will give
such sets S; however, the resulting sets S can be extremely large and testing surjectivity of
ρE,` for the finite number of ` ∈ S can be time consuming. Stein verified Conjecture 1.1 for
curves of conductor at most 30000 using the bound of Cojocaru, cf. [Ste]; the resulting sets S
would typically consist of thousands of primes (this should be contrasted with Example 1.3).
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We will explain in §6 how to test the surjectivity of ρE,` for the finitely many primes ` ∈ S
that satisfy ` > 13. We have implemented the above algorithm in Magma [BCP97]; code can
be found at https://github.com/davidzywina/SurjectivityOfGalois

Example 1.3. We have run the above algorithm on all non-CM elliptic curves E/Q with
conductor at most 500000; they can be found in Cremona’s database [Cre]. For all such
curves E/Q, we found that pr ≤ 71. By the Hasse bound, we have ai ≤ 2

√
pi ≤ 2

√
71 < 17

for 1 ≤ i ≤ r. So for each ` > 13 with (`, jE) /∈ S , we have ai 6≡ 0 (mod `) for all
1 ≤ i ≤ r and thus ` /∈ S. This verifies Conjecture 1.1 for all non-CM elliptic curves E/Q
with conductor at most 500000. This information is now part of Cremona’s database.

Remark 1.4.

(i) Replacing E by a quadratic twist does not change the primes qj, the primes pi or the
integers ai. In particular, the set S does not change if we replace E by a quadratic
twist and hence it depends only on jE.

In the above algorithm, one could also add the additional condition that E has
good reduction at each pi. The theorem still holds with the new resulting set S
(which need not only depend on jE anymore).

(ii) In principle, the most time consuming part of computing S is to determine the odd
primes p for which vp(jE − 1728) is positive and odd; note that the curve E has bad
reduction at such primes p. However, observe that we do not need to determine all
the primes of bad reduction. This complements §1.2, where we find an alternate set
S when jE /∈ Z by only using the primes that divide the denominator of jE.

(iii) The linear equation Amx = bm is equivalent to having
∑d

j=1 αi,jxj = βi for all
1 ≤ i ≤ m. In the special case d = 0, r is the smallest positive integer for which
βr 6= 0.

1.2. Non-integral j-invariants. Let E/Q be a non-CM elliptic curve. The following,
which will be proved in §4, shows that if ρE,` is not surjective, then the denominator of jE
must be of a special form.

Theorem 1.5. Let pe11 · · · pess be the factorization of the denominator of jE, where the pi are
distinct primes with ei > 0. If ρE,` is not surjective for a prime ` > 13 with (`, jE) /∈ S ,
then each pi is congruent to ±1 modulo ` and each ei is divisible by `.

Now suppose that the j-invariant of E is not an integer (the theorem is trivial otherwise).
Let g be the greatest common divisor of the integers (pi + 1)(pi − 1) and ei with 1 ≤ i ≤ s.
Let S ′ be the set of primes ` such that ` ≤ 13, (`, jE) ∈ S , or g ≡ 0 (mod `). The set S ′ is
finite. The following is a direct consequence of Theorem 1.5.

Proposition 1.6. If jE is not an integer, then the representation ρE,` is surjective for all
primes ` /∈ S ′.
Example 1.7. We have verified Conjecture 1.1 for all non-CM elliptic curves E/Q in the
Stein-Watkins database (it consist of 136,924,520 elliptic curves with conductor up to 108).
Proposition 1.6 sufficed for all E/Q with jE /∈ Z, i.e., there were no primes ` ∈ S ′ with
` > 13 and (`, jE) /∈ S . The integral j-invariants were handled using the algorithm from
§1.1.

We now give some easy bounds for c(E).
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Proposition 1.8. Suppose that jE is not an integer.

(i) We have c(E) ≤ max{17, g}.
(ii) We have c(E) ≤ max{17, (p+ 1)/2} for every prime p with vp(jE) < 0.

(iii) We have c(E) ≤ max{17, log d}, where d ≥ 1 is the denominator of jE.

Proof. Take any prime ` > 13 for which ρE,` is not surjective. If (`, jE) ∈ S , then ` = 17
since jE is not an integer by assumption. So we may assume that (`, jE) /∈ S . Proposition 1.6
implies that ` ≤ g since max S ′ ≤ max{17, g}.

Take any prime p satisfying vp(jE) < 0. We have p ≡ ±1 (mod `) by Theorem 1.5. Since
p+1 and p−1 are not primes, we must have ` ≤ (p+1)/2. By Theorem 1.5, the denominator
d of jE is divisible by p` and is thus at least (`− 1)`. Hence, ` ≤ ` log(`− 1) ≤ log d.

The proposition follows from the given upper bounds for `. �

Remark 1.9. For any non-CM elliptic curve E/Q, Masser and Wüstholz [MW93] have shown
that c(E) ≤ c(max{1, h(jE)})γ, where c and γ are absolute constants (which if computed
are very large) and h(jE) is the logarithmic height of jE. Proposition 1.8(iii) gives a simple
version in the case jE /∈ Z since log d ≤ h(jE).

1.3. A bound. We now discuss some bounds for c(E) in terms of the conductor. Kraus
[Kra95] proved that

c(E) ≤ 68 rad(NE)(1 + log log rad(NE))1/2

where rad(NE) =
∏

p|NE
p. Using a similar approach, Cojocaru [Coj05] showed that c(E) is

at most 4
3

√
6 ·NE

∏
p|NE

(1+1/p)1/2 +1. We shall strengthen these bounds with the following
theorem which will be proved in §5.

Theorem 1.10. Let E/Q be a non-CM elliptic curve that has no primes of multiplicative
reduction. Then

c(E) ≤ max
{

37,
2
√

3

3
N

1/2
E

∏
p|NE

(1

2
+

1

2p

)1/2}
.

In particular, c(E) ≤ max
{

37, N
1/2
E

}
.

Suppose that we are in the excluded case where E/Q has multiplicative reduction at a
prime p. Then the bound c(E) ≤ max{17, (p + 1)/2} from Proposition 1.8 already gives a
sizeable improvement over the bounds of Kraus and Cojocaru.

Acknowledgements. Thanks to Andrew Sutherland and Barinder Singh Banwait. Thanks
also to Larry Rolen and William Stein for their corrections of an older version of this paper.
Special thanks to the referee who made several suggestions that improved the exposition.

2. The character ε`

Fix a non-CM elliptic curve E/Q and a prime ` > 13 with (`, jE) /∈ S such that the
representation ρE,` is not surjective.

Proposition 2.1 (Serre, Mazur, Bilu-Parent-Rebolledo). With assumptions as above, the
image of ρE,` lies in the normalizer of a non-split Cartan subgroup of GL2(F`).
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Before explaining the proposition, let us recall some facts about non-split Cartan sub-
groups. A non-split Cartan subgroup of GL2(F`) is the image of a homomorphism F×`2 ↪→
AutF`

(F`2) ∼= GL2(F`), where the first map comes from acting by multiplication and the iso-
morphism arises from some choice of F`-basis of F`2 . Let C be a non-split Cartan subgroup;
it is cyclic of order `2 − 1 and is uniquely defined up to conjugacy in GL2(F`). Let N be
the normalizer of C in AutF`

(F`2) ∼= GL2(F`); it is the subgroup generated by C and the
automorphism a 7→ a` of F`2 . In particular, [N : C] = 2.

Fix a non-square ε ∈ F`. After replacing C by a conjugate, one can take C to be the
group consisting of matrices of the form ( a bεb a ) with (a, b) ∈ F2

` − {(0, 0)}; the group N is
then generated by C and the matrix ( 1 0

0 −1 ). For all g ∈ N − C, g2 is scalar and tr(g) = 0.

Proof of Proposition 2.1. Suppose that ρE,` is not surjective; its image lies in a maximal
subgroup H of GL2(F`). We have det(ρE,`(GalQ)) = F×` since the character det ◦ρE,` cor-
responds to the Galois action on the `-th roots of unity. Therefore, det(H) = F×` . From
[Ser72, §2], we find that, up to conjugation, H is one of the following:

(a) a Borel subgroup of GL2(F`),
(b) the normalizer of a split Cartan subgroup of GL2(F`),
(c) the normalizer of a non-split Cartan subgroup of GL2(F`),
(d) for ` ≡ ±3 (mod 8), a subgroup of GL2(F`) that contains the scalar matrices and

whose image in PGL2(F`) is isomorphic to the symmetric group S4.

That ρE,`(GalQ) is not contained in a Borel subgroup when ` > 13 and (`, jE) /∈ S is
a theorem of Mazur, cf. [Maz78]; the modular curves X0(17) and X0(37) each have two
rational points which are not cusps or CM points and these points are explained by the pairs
(`, jE) ∈ S . Bilu, Parent and Rebolledo have shown that ρE,`(GalQ) cannot be conjugate
to a subgroup as in (b), cf. [BPR13]; they make effective the bounds in earlier works of Bilu
and Parent using improved isogeny bounds of Gaudron and Rémond. Serre has shown that
ρE,`(GalQ) cannot be conjugate to a subgroup as in (d), cf. [Ser81, §8.4]. Therefore, the only
possibility for H is to be a group as in (c). �

By Proposition 2.1 and our assumption on ρE,`, the image of ρE,` is contained in the
normalizer N of a non-split Cartan subgroup C of GL2(F`). Following Serre, we define the
quadratic character

ε` : GalQ
ρE,`−−→ N/C

∼−→ {±1}.
For each prime p, let Ip be an inertia subgroup of GalQ at p. Recall that ε` is unramified at
p if and only if ε`(Ip) = {1}.

We now state several basic lemmas concerning the character ε`. We first consider some
primes for which E has multiplicative reduction.

Lemma 2.2. Take any prime p for which vp(jE) < 0.

(i) The character ε` is unramified at p
(ii) We have p ≡ ±1 (mod `) and vp(jE) ≡ 0 (mod `).

Proof. Define GalQp = Gal(Qp/Qp), where Qp is a fixed algebraic closure of Qp. Choosing

Qp to contain Q, the restriction map GalQp → GalQ is an injective homomorphism that we
will view as an inclusion. There exists an element q ∈ Qp with vp(q) = −vp(jE) > 0 such
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that

jE = (1 + 240
∑

n≥1
n3qn/(1− qn))3/(q

∏
n≥1

(1− qn)24) = q−1 + 744 + 196884q + · · · ;

let E/Qp be the Tate curve associated to q, cf. [Sil94, V§3]. The elliptic curve E has j-

invariant jE and E(Qp) is isomorphic to Q×p /〈q〉 as a GalQp-module. In particular, the

`-torsion subgroup E [`] is isomorphic as an F`[GalQp ]-module to the subgroup of Q×p /〈q〉
generated by an `-th root of unity ζ` and a fixed `-th root q1/` of q. Let α : GalQp → F×` and
β : GalQp → F` be the maps defined so that

σ(ζ`) = ζ
α(σ)
` and σ(q1/`) = ζ

β(σ)
` q1/`

for all σ ∈ GalQp .
So for an appropriate choice of basis for E [`], the representation ρE,` : GalQp → GL2(F`)

satisfies ρE,`(σ) =
(
α(σ) β(σ)
0 1

)
for σ ∈ GalQp . The curves E and E are quadratic twists of

each other over Qp since they are non-CM curves with the same j-invariant. So there is a
character χ : GalQp → {±1} such that, after an appropriate choice of basis for E[`], we have

ρE,`(σ) = χ(σ)
(
α(σ) β(σ)
0 1

)
for all σ ∈ GalQp .

Take any σ ∈ GalQp . Since C is non-split, the only matrices in C with eigenvalue 1 or −1
are ±I. So if ρE,`(σ) belongs to C, then α(σ) = 1 and β(σ) = 0. If ρE,`(σ) belongs to N−C,
then α(σ) = −1 since every matrix in N − C has trace 0. This proves that α takes values
in {±1} and that α(σ) ≡ ε`(σ) (mod `) for all σ ∈ GalQp . We have ` 6= p, since otherwise
α(GalQp) = F×` which is impossible since ` > 13 and α takes values in {±1}.

Since ` 6= p, α = det ◦ρE,`|GalQp
is unramified. Since α(σ) ≡ ε`(σ) (mod `) for all σ ∈

GalQp , we deduce that ε` is unramified at p. Therefore,

ε`(Frobp) ≡ α(Frobp) = det ρE,`(Frobp) ≡ p (mod `).

In particular, we must have p ≡ ±1 (mod `) since ε`(Frobp) = ±1.
It remains to prove that e := −vp(jE) is divisible by `. The matrices I and −I are the

only elements of N that have eigenvalue 1 or −1 with multiplicity 2. Since α(GalQp(ζ`)) = 1,

we must have β(GalQp(ζ`)) = 0 and hence q1/` ∈ Qp(ζ`). Extend the valuation vp of Qp to
Qp(ζ`). Since Qp(ζ`)/Qp is an unramified extension (we saw above that p 6= `), we deduce
that vp(q

1/`) belongs to Z and hence e = −vp(jE) = vp(q) = `vp(q
1/`) ∈ `Z. �

Let q1, . . . , qd be the primes from §1.1.

Lemma 2.3.

(i) The character ε` is unramified at ` and at all primes p /∈ {q1, . . . , qd}.
(ii) If p ∈ {q1, . . . , qd} − {`}, then ρE,`(Ip) contains −I and an element of order 4.

Proof. Take any prime p.
• First suppose that p = `. Let I ′` be the maximal pro-` subgroup of I`. We have ρE,`(I

′
`) = 1

since N has cardinality relatively prime to `. The group ρE,`(I`) is cyclic since every finite
quotient of the tame inertia group I`/I

′
` is cyclic, see [Ser72, §1.3] for the the structure of

I`/I
′
`. Fix a generator g of ρE,`(I`). By the proof of [Ser81, p.397 Lemme 18’], the image

ρE,`(I`) in PGL2(F`) contains an element of order at least (` − 1)/4 > 2. The order of the
6



image of g in PGL2(F`) is greater than 2, so g2 is not a scalar matrix. However, g2 is a
scalar matrix for all g ∈ N − C. So g belongs to C and thus ρE,`(I`) ⊆ C. Therefore, ε` is
unramified at `.
• Suppose that p 6= ` and that E has good reduction at p. We have ρE,`(Ip) = {I} ⊆ C
since ρE,` is unramified at such primes p. Therefore, ε` is unramified at p.
• Suppose that p 6= ` and that vp(jE) < 0. By Lemma 2.2(i), ε` is unramified at p.
• Finally suppose that p 6= ` is a prime for which E bad reduction at p and vp(jE) ≥ 0.
Choose a minimal Weierstrass model of E/Q and let ∆, c4 and c6 be the standard invariants
attached to this model as given in [Sil09, III §1].

Define the group

Φp := ρE,`(Ip) ⊆ N

and let Φp be the image of Φp in N/{±I}. We have Φp ⊆ SL2(F`) since det ◦ρE,` is ramified
only at the prime `. Using ρE,`, we can identify Φp with Gal(L/Qun

p ) where L is the smallest
extension of Qun

p for which E base extended to L has good reduction.

Let Ẽ/Fp be the elliptic curve obtained by reducing E/L. Serre observes in §5.6 of [Ser72]

that Φp is isomorphic to a subgroup of Aut(Ẽ). We claim that Φp is isomorphic to a subgroup

of Aut(Ẽ)/{±1}. Reduction induces an isomorphism ϕ : E[`]
∼−→ Ẽ[`] between the `-torsion

subgroups. With respect to the isomorphism ϕ, the action of an element σ ∈ Gal(L/Qun
p )

on E[`] corresponds to the action of some automorphism of Ẽ on Ẽ[`], see the proof of

Theorem 2 in [ST68]. Since Aut(Ẽ) acts faithfully on the `-torsion of Ẽ, using ϕ and the

implicit isomorphism E[`] ∼= F2
` we may identify Aut(Ẽ) with a subgroup A of GL2(F`) that

contains Φp. We have −I ∈ A since the automorphism −1 of Ẽ acts as −1 on the `-torsion

of Ẽ. Therefore, Φp is isomorphic to a subgroup of A/{±I} ∼= Aut(Ẽ)/{±1} which proves
the claim.

Consider p ≥ 5. The group Aut(Ẽ) is cyclic of order 2, 4 or 6, so Φp is cyclic of order 2, 3,
4 or 6. We have jE − 1728 = c26/∆, so vp(jE − 1728) ≡ vp(∆) (mod 2). From [Ser72, §5.6],
we find that Φp has order 2, 3 or 6 if and only if vp(j − 1728) is even. So if vp(j − 1728) is
even, then Φp is cyclic of order 1 or 3. If vp(j − 1728) is odd, then Φp is cyclic of order 4.

Consider p = 3. The group Aut(Ẽ) is now either cyclic of order 2, 3, 4 or 6, or is a
non-abelian group of order 12 (it is a semi-direct product of a cyclic group of order 4 by
a distinguished subgroup of order 3). In the cases where Φp is cyclic of order 2, 3 or 6,
the group Φp is cyclic of order 1 or 3. Using that vp(jE − 1728) ≡ vp(∆) (mod 2) and
Théorème 1 of [Kra90], we find that Φp has order 2, 3 or 6 if and only if vp(j−1728) is even.
So if vp(j − 1728) is even, then Φp is cyclic of order 1 or 3. If vp(j − 1728) is odd, then Φp

contains a cyclic group of order 4.

Consider p = 2. Then the group Aut(Ẽ), and hence also Φp, is isomorphic to a sub-
group of SL2(F3). The group Φp is either cyclic of order 2, 3, 4 or 6, isomorphic to the
order 8 group of quaternions {±1,±i,±j,±k}, or is isomorphic to SL2(F3). In particular,
|Φp| ∈ {2, 3, 4, 6, 8, 24}. In the cases where Φp is cyclic of order 2, 3 or 6, the group Φp is cyclic
of order 1 or 3. The corollary to Théorème 3 of [Kra90] shows that the values v2(c4) and v2(∆)
determine whether or not |Φp| lies in the set {2, 3, 6, 24}. We have jE = c34/∆ and hence
v2(jE) = 3v2(c4)−v2(∆). By checking every case in the tables of the corollary to Théorème 3
of [Kra90], we find that Φp has order 2, 3, 6 or 24 if and only if v2(jE) /∈ {3, 6, 9}. The group
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SL2(F3) is not isomorphic to a subgroup of N since SL2(F3) is non-abelian and has no index
2 normal subgroups. Since Φp ⊆ N , this proves that |Φp| 6= 24. So if v2(jE) /∈ {3, 6, 9}, then
Φp is cyclic of order 1 or 3. If v2(jE) ∈ {3, 6, 9}, then Φp contains a group of order 4.

Now suppose that p /∈ {q1, . . . , qd}. From the above computations and our choice of qj,
we find that Φp has order 1 or 3. Since −I ∈ C and [N : C] = 2, we deduce that Φp is a
subgroup of C. Therefore, ε` is unramified at p. This completes the proof of (i).

Finally suppose that p ∈ {q1, . . . , qd}− {`}. From the above computations and our choice
of qj, we find that there is an element g ∈ Φp of order 4. Since [N : C] = 2, g2 lies in C and
has order 2. We have g2 = −I since −I ∈ C and C is cyclic (and hence has at most one
element of order 2). This completes the proof of (ii). �

Remark 2.4. If ` ≡ 1 (mod 4), then we claim that ε` is ramified at a prime p if and only if
p ∈ {q1, . . . , qd}−{`}. One direction of the claim is immediate from Lemma 2.3(i). Now take
any prime p ∈ {q1, . . . , qr}−{`}. Suppose that ε` is unramified at p and hence Φp := ρE,`(Ip)
is a subgroup of C. We have Φp ⊆ C ∩ SL2(F`) since det ◦ρE,` is ramified only at `. The
group C ∩ SL2(F`) has no elements of order 4 since it is cyclic of order ` + 1 and ` + 1 ≡ 2
(mod 4). This contradicts Lemma 2.3(ii), so ε` is indeed ramified at p.

Lemma 2.5. There are unique integers e1, . . . , ed ∈ {0, 1} such that

ε`(Frobp) =

(
−1

p

)
·

d∏
j=1

(
qj
p

)ej
for all odd primes p - q1 · · · qd. In particular, ε` 6= 1.

Proof. Since ε` is a quadratic character, there is a unique squarefree integer D satisfying
ε`(Frobp) =

(−D
p

)
for all odd primes p - D. Let q be any prime dividing D. The character ε`

is ramified at q, so q = qj for some j by Lemma 2.3. Therefore, D divides q1 · · · qd.
It remains to show that D is positive. It suffices to show that ε`(c) = −1, where c ∈ GalQ

corresponds to complex conjugation under a fixed embedding Q ↪→ C. Set g := ρE,`(c).
We have g2 = I since c has order 2. The matrix g has determinant −1 since the character
det ◦ρE,` corresponds to the Galois action on the `-th roots of unity. The Cartan subgroup
C is cyclic since it is non-split, so the only elements of C with order 1 or 2 are I and −I.
Since det(±I) = 1, we deduce that g /∈ C and hence ε`(c) = −1 as claimed. �

Lemma 2.6. Let p be a prime for which E has good reduction. If ap(E) 6≡ 0 (mod `), then
ε`(Frobp) = 1.

Proof. That ap(E) ≡ 0 (mod `) for every good prime p satisfying ε(Frobp) = −1 is [Ser72,
p.317(c5)]; for p 6= `, this follows by noting that tr(g) = 0 for all g ∈ N − C. �

3. Proof of Theorem 1.2

Lemma 3.1. Consider any quadratic twist E ′/Q of E and any prime ` > 13. Then ρE,` is
surjective if and only if ρE′,` is surjective.

Proof. First assume that ρE,` is surjective. The curve E ′ is a twist of E by a nonzero integer d.

Let χ : GalQ → {±1} be the character that factors through Gal(Q(
√
d)/Q) ↪→ {±1}. After

making appropriate choices of a basis for E[`] and E ′[`], we have ρE′,`(σ) = χ(σ)ρE,`(σ) for
8



all σ ∈ GalQ. Therefore, ±ρE′,`(GalQ) = GL2(F`). Taking commutator subgroups, we find
that ρE′,`(GalQ) ⊇ SL2(F`). Since det(ρE,`(GalQ)) = F×` , we deduce that ρE′,` is surjective.
This proves one implication of the lemma and the other follows by switching the roles of E
and E ′. �

Lemma 3.2. The set S does not change if we replace E/Q by a quadratic twist. There is a
quadratic twist of E that does not have Kodaira symbol I∗0 at any odd prime.

Proof. Let E ′ be a quadratic twist of E by a nonzero integer D. We may assume D is
squarefree. The elliptic curve E ′ is also non-CM and has the same j-invariant as E. So the
primes q1 < · · · < qd in §1.1 are the same if we replace E by E ′.

Consider any odd prime p. If p - D and E has Kodaira symbol I0 or I∗0 at p, then E ′ has
the same Kodaira symbol at p. If p|D and E has Kodaira symbol I0 or I∗0 at p, then E ′ has
Kodaira symbol I∗0 or I0, respectively, at p. In particular, by swapping the role of E and E ′,
we find that E has Kodaira symbol I0 or I∗0 at p if and only if E ′ has Kodaira symbol I0 or
I∗0 at p. Moreover, if D is the product of the odd primes for which E has Kodaira symbol I∗0,
then E ′ does not have Kodaira symbol I∗0 at any odd prime.

Now suppose that for an odd prime p, E has Kodaira symbol I0 or I∗0 at p. With notation
as in §1.1, the curves Ep and E ′p both have good reduction at p and are quadratic twists of
each other by a squarefree integer D0 that is not divisible by p. Therefore, ap(Ep) = ±ap(E ′p).
This proves that the primes p1 < p2 < p3 < p4 < . . . and integers ai in §1.1 are the same if
we replace E by E ′. Examining the algorithm of §1.1, we find that the set S is unchanged
if replace E by E ′. �

By Lemmas 3.1 and 3.2, we may replace E by a quadratic twist so that it never has
Kodaira symbol I∗0 at any odd prime. In particular, for each pi, we have ai = |api(E)|.

Suppose that there is a prime ` /∈ S for which ρE,` is not surjective. From our choice of
`, Proposition 2.1 implies that the image of ρE,` is contained in the normalizer of a non-
split Cartan subgroup of GL2(F`). Let ε` : GalQ → {±1} be the corresponding quadratic
character. By Lemma 2.5, there are unique e1, . . . , ed ∈ {0, 1} such that ε`(Frobp) =

(−1
p

)
·∏d

j=1

(qj
p

)ej for all primes p - 2q1 · · · qd.
Now consider p = pi with 1 ≤ i ≤ r. We have |api(E)| = ai 6≡ 0 (mod `) since ` /∈ S.

Lemma 2.6 implies that ε`(Frobpi) = 1 for all 1 ≤ i ≤ r. Therefore,

d∏
j=1

(
qj
pi

)ej
=

(
−1

pi

)
for all 1 ≤ i ≤ r. Using the isomorphism {±1} ∼= F2, this is equivalent to having∑d

j=1 αi,jej = βi for all 1 ≤ i ≤ r. This shows that the equation Arx = br has a solu-

tion in Fd2. However, this contradicts our choice of r. Therefore, the representation ρE,` must
be surjective for all ` /∈ S.

4. Proof of Theorem 1.5

Take any prime ` > 13 with (`, jE) /∈ S such that ρE,` is not surjective. Take any prime
p for which vp(jE) < 0 and set e := −vp(jE). By Lemma 2.2, we have p ≡ ±1 (mod `) and
e ≡ 0 (mod `). The theorem is now immediate.
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5. Proof of Theorem 1.10

Suppose that ρE,` is not surjective for a prime ` > 13 with (`, jE) /∈ S . We can then define
a quadratic character ε` : GalQ → {±1} as in §2. Let E ′/Q be the elliptic curve obtained
by twisting E/Q by ε`.

Lemma 5.1. The elliptic curves E and E ′ have the same conductors.

Proof. Take any prime p. Lemma 1 of [Kra95] says that E and E ′ have the same reduction
type (i.e., good, additive or multiplicative) at p. This proves that ordp(NE) = ordp(NE′) for
p ≥ 5. To prove this equality for p = 2 and 3, we need to check that the wild part of the
conductors of E and E ′ at p agree; for a description of the wild part of the conductor at p,
see [Sil94, IV§10].

For our prime p ≤ 3, it suffices to show that the groups ρE,`(Ip) and ρE′,`(Ip) are conjugate
in GL2(F`). After choosing appropriate bases of E[`] and E ′[`], we may assume that ρE′,` =
ε` · ρE,`. If ε` is unramified at p, then ρE′,`(Ip) = ρE,`(Ip).

So we may assume that ε` is ramified at p. We clearly have ±ρE′,`(Ip) = ±ρE,`(Ip), so
it suffices to show that ρE′,`(Ip) and ρE,`(Ip) both contain −I. Since ε` is ramified at p,
Lemma 2.3 implies that ρE,`(Ip) contains −I.

We have ρE′,`(GalQ) ⊆ ±ρE,`(GalQ) ⊆ N and in particular ρE′,` is not surjective. The
character

GalQ
ρE′,`−−→ N → N/C

∼−→ {±1}
agrees with ε` since ρE′,` = ε` · ρE,` and −I ∈ C. Note that E is the quadratic twist of E ′

by ε`. So by switching the roles of E and E ′, we find that ρE′,`(Ip) contains −I. �

By Lemma 5.1, the elliptic curves E and E ′ have the same conductor; denote it by N .
By the modularity theorem (proved by Wiles, Taylor, Breuil, Conrad and Diamond), there
are newforms f and g ∈ S2(Γ0(N)) corresponding to E and E ′, respectively. Let an(f) and
an(g) be the n-th Fourier coefficient of f and g at the cusp i∞. The following lemma gives
a Sturm bound for a prime q that satisfies aq(f) 6= aq(g). Note that f and g are distinct
since ε` 6= 1 (by Lemma 2.5) and since E and E ′ are non-CM.

Lemma 5.2. Let f and g be distinct normalized newforms in S2(Γ0(N)). Then there exists
a prime q such that

(5.1) q ≤ N

3

∏
p|N

(1

2
+

1

2p

)
− 1

and aq(f) 6= aq(g).

Proof. Consider the modular curve X0(N) defined over C. Its complex points form a Rie-
mann surface obtained by quotienting the complex upper-half plane by Γ0(N) and then
compactifying by adding cusps. For each prime power q = pe such that pe ‖ N , let Wq be

a matrix of the form
(
qa b
Nc qd

)
with a, b, c, d ∈ Z that has determinant q. The matrix Wq

normalizes Γ0(N) and thus induces an automorphism of X0(N). Let W (N) be the subgroup
of Aut(X0(N)) generated by the {Wpe}pe‖N . The group W (N) is isomorphic to (Z/2Z)r

where r is the number of distinct prime factors of N [AL70, Lemma 9]. The group W (N)
permutes the cusps of X0(N) and the stabilizer of the cusp i∞ is trivial.
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For the newform f , consider the holomorphic differential form η = f(z)dz on X0(N). For
each automorphism w ∈ W (N), there is a λw(f) ∈ {±1} such that η(wz) = λw(f)η(z),
cf. [AL70, Theorem 3]. Similarly, we have values λw(g) ∈ {±1} for w ∈ W (N).

Let H be the set of w ∈ W (N) for which λw(f) = λw(g); it is a subgroup of W (N) of
cardinality 2r or 2r−1. The holomorphic differential form ω := (f(z) − g(z))dz is non-zero
since f and g are distinct. Let K = div(ω) be the corresponding (effective) divisor on X0(N);
it has degree 2gX0(N) − 2 where gX0(N) is the genus of X0(N). Therefore,∑

P
ordP (ω) ≤ 2gX0(N) − 2

where the sum is over the cusps of X0(N). For a fixed automorphism w ∈ H, we have a cusp
P = w·i∞. From our choice ofH, we find that ω(wz) = ±ω(z) and thus ordP (ω) = ordi∞(ω).
Therefore,

2r−1 ordi∞(ω) ≤ |H| ordi∞(ω) ≤ 2gX0(N) − 2 ≤ N

6

∏
p|N

(1 + 1/p)− 2r

where the last inequality uses an explicit formula for gX0(N) [Shi94, Prop. 1.40] and that
X0(N) has at least 2r cusps. Let n be the smallest positive integer for which the Fourier
coefficients an(f) and an(g) disagree. We have ordi∞(ω) = n− 1, and hence

n ≤ 1

2r
N

3

∏
p|N

(1 + 1/p)− 1.

If n is prime, then we are done. If n is composite with an(f) 6= an(g), then aq(f) 6= aq(g) for
some prime q dividing n (since f and g are normalized eigenforms, we know that their Fourier
coefficients are multiplicative and are defined recursively for prime powers indices). �

Remark 5.3. If f and g are distinct modular forms on Γ0(N) of weight 2, then the same
proof, but only looking at the cusp i∞, shows that there is an integer n ≤ N

6

∏
p|N(1 + 1

p
)

such that an(f) 6= an(g). This is the bound used in [Coj05] and [Kra95]; though possibly
working with a larger N .

By Lemma 5.2, there is a prime q satisfying (5.1) such that aq(E) = aq(f) 6= aq(g) =
aq(E

′). Since ap(E) = ap(E
′) = 0 for primes of additive reduction, we find that E has either

good or multiplicative reduction at q. By assumption, E has no primes of multiplicative
reduction, so E has good reduction at q.

Since aq(E) 6= aq(E
′) = ε`(Frobq)aq(E), we deduce that ε`(Frobq) = −1 and aq(E) 6= 0.

By Lemma 2.6, we find that aq(E) ≡ 0 (mod `). The Hasse bound then implies that

` ≤ |aq(E)| ≤ 2
√
q ≤ 2

√√√√N

3

∏
p|N

(1

2
+

1

2p

)
=

2
√

3

3
N1/2

∏
p|N

(1

2
+

1

2p

)1/2
.

Since N is divisible by some prime (there is no elliptic curve over Q with good reduction

everywhere), we have ` ≤ 2
√
3

3
N1/2(1

2
+ 1

4

)1/2
= N1/2.
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6. Remaining primes

Fix a non-CM elliptic curve E/Q and a prime ` > 13. In this section, we explain how
to determine whether ρE,` is surjective. Combined with Theorem 1.2 (or possibly Proposi-
tion 1.6), this gives a method to compute the (finite) set of primes ` > 13 for which ρE,` is
not surjective.

Proposition 6.1. The representation ρE,` is surjective if and only if (`, jE) /∈ S and there
is a prime p - NE` such that ap(E) 6≡ 0 (mod `) and ap(E)2−4p is a non-zero square modulo
`.

Proof. As noted in the introduction, the representation ρE,` is not surjective when (`, jE) ∈
S . So assume that (`, jE) /∈ S . First suppose that there is a prime p - NE` such that
ap(E) 6≡ 0 (mod `) and ap(E)2 − 4p is a non-zero square modulo `. With g := ρE,`(Frobp),
we have tr(g) 6= 0 and tr(g)2 − 4 det(g) is a non-zero square. Let N be the normalizer of
a non-split Cartan subgroup C of GL2(F`). For all A ∈ N − C, we have tr(A) = 0. For
all A ∈ C, the value tr(A)2 − 4 det(A) ∈ F` is either zero or a non-square. So g /∈ N , and
hence ρE,`(GalQ) is not a subgroup of the normalizer of a non-split Cartan. Therefore, ρE,`
is surjective by Proposition 2.1.

Now suppose that ρE,` is surjective. Let X be the set of matrices A ∈ GL2(F`) for which
tr(A) 6= 0 and tr(A)2−4 det(A) is a non-zero square. The set X is nonempty since any matrix
( a 0
0 b ) with a+ b 6= 0 and a 6= b lies in X. The set X is stable under conjugation by GL2(F`).

Since ρE,`(GalQ) = GL2(F`), the set of primes p - NE` for which ρE,`(Frobp) ⊆ X has density
|X|/|GL2(F`)| > 0 by the Chebotarev density theorem. Finally observe that for a prime p -
NE` with ρE,`(Frobp) ⊆ X, we have that ap(E)2− 4p ≡ tr(ρE,`(Frobp))

2− 4 det(ρE,`(Frobp))
is a non-zero square mod ` and ap(E) ≡ tr(ρE,`(Frobp)) 6≡ 0 (mod `). �

Assuming that Conjecture 1.1 holds, the criterion of Proposition 6.1 will always apply for
some p and prove that ρE,` is surjective when (`, jE) /∈ S . In practice, one can quickly find
a prime p that works. Indeed if ρE,` is surjective, the Chebotarev density theorem shows
that the set of primes p - NE` such that ap(E) 6≡ 0 (mod `) and ap(E)2 − 4p is a non-zero
square modulo ` will have density 1/2 + O(1/`), where the implicit constant depends only
on E.

In the unlikely case that (`, jE) /∈ S and the surjectivity is unknown after computing ap(E)
for many primes p - NE`, then one can simply do a direct computation. The representation
ρE,` is surjective if and only if the image of ρE,`(GalQ) in GL2(F`)/{±I} is the full group
GL2(F`)/{±I}. For a given Weierstrass equation y2 = x3 +ax+ b for E/Q one can compute
the division polynomial of E at the prime `; it is the monic polynomial f(X) ∈ Q[X] whose
roots are the x-coordinates of the elements of order ` in E(Q). The Galois group of f(x) is
isomorphic to the image of ρE,`(GalQ) in GL2(F`)/{±I} and can be computed directly.
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