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Abstract. We study the Galois groups of polynomials arising from a compatible family of repre-
sentations with big orthogonal monodromy. We show that the Galois groups are usually as large as
possible given the constraints imposed on them by a functional equation and discriminant consid-
erations. As an application, we consider the Frobenius polynomials arising from the middle étale
cohomology of hypersurfaces in P2n+1

Fq
of degree at least 3. We also consider the L-functions of

quadratic twists of fixed degree of an elliptic curve over a function field Fq(t). To determine the
typical Galois group in the elliptic curve setting requires using some known cases of the Birch and
Swinnerton-Dyer conjecture. This extends and generalizes work of Chavdarov, Katz and Jouve.

1. Introduction

1.1. Constraint on the Galois group of reciprocal polynomials. We first define some of the
groups that will arise as Galois groups in our applications.

For each integer n ≥ 1, let W2n be the subgroup of signed permutations in GLn(Z), i.e., per-
mutation matrices whose non-zero entries are allowed to be ±1. Let W+

2n be the subgroup of W2n
consisting of those elements that act evenly on the set {±e1, . . . ,±en}. The group W2n has order
2nn! and is isomorphic to the Weyl group of the root systems Bn and Cn. The group W+

2n has
order 2n−1n! and is isomorphic to the Weyl group of the root system Dn.

Now consider a polynomial P ∈ Q[T ] of degree N > 2 that satisfies

TNP (1/T ) = εP (T )(1.1)

for some ε ∈ {±1}. Setting T = 1 and T = −1 in the above equation, we find that P (1) = 0 if
ε 6= 1 and P (−1) = 0 if ε 6= (−1)N . So by removing these obvious linear factors from P , we obtain
a polynomial

f(T ) :=


P (T )/(1 + εT ) if N is odd,
P (T )/(1− T 2) if N is even and ε = −1,
P (T ) if N is even and ε = 1

(1.2)

with rational coefficients and even degree 2n ≥ 2. From (1.1), we deduce that the polynomial f is
reciprocal, i.e., it satisfies T 2nf(1/T ) = f(T ).

Let Gal(P ) be the Galois group of a splitting field of P , equivalently of f , over Q. Since f is
reciprocal, its distinct roots in Q− {±1} are of the form α1, . . . ,αm,α−1

1 , . . . ,α−1
m for an integer

1 ≤ m ≤ n. Let ι : {α±1
1 , . . . ,α±1

m } → {±e1, . . . ,±em} be the bijection satisfying ι(αi) = ei
and ι(α−1

i ) = −ei. There is a unique injective homomorphism ψ : Gal(P ) ↪→ W2m satisfying
ι(σ(α)) = ψ(σ) · ι(α) for each root α ∈ Q− {±1} of P and σ ∈ Gal(P ). So Gal(P ) is isomorphic
to a subgroup of W2m and hence also a subgroup of W2n. So Gal(P ) is isomorphic to a subgroup
of WN−1 if N is odd, WN−2 if N is even and ε = −1, and WN if N is even and ε = 1.
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Suppose that P is separable, N is even and ε = 1. If the discriminant of P is a square, then
Gal(P ) will be isomorphic to a subgroup of W+

N .

1.2. Example: smooth hypersurfaces over finite fields. Fix an even integer n ≥ 2 and an
integer d ≥ 3 with (n, d) 6= (2, 3). Fix a finite field Fq with cardinality q. We define U (Fq) to be
the set of homogeneous polynomials in Fq[x0, . . . ,xn+1] of degree d, up to scalar multiplication by
F×q , that define a smooth hypersurface in Pn+1

Fq
.

Take any f ∈ U (Fq). The zeta function of the hypersurface Hf in Pn+1
Fq

defined by f is the power
series

Zf (T ) = exp
( ∞∑
n=1
|Hf (Fqn)| · Tn/n

)
.

One can show that Zf (T ) is a rational function in T and moreover that

Zf (T ) = 1/
(
Pf (q

nT ) ·
∏2n

i=0
(1− qiT )

)
for a unique polynomial Pf (T ) ∈ Q[T ] of degree N := (d− 1)((d− 1)n+1 + 1)/d. Note that the
integer N depends only on n and d. The functional equation for Zf (T ) implies that we have the
relation TNPf (1/T ) = εf Pf (T ) for a unique εf ∈ {±1}.

We will describe the Galois group Gal(Pf ) for a “random” f ∈ U (Fq). From §1.1, and using
that N is even if and only if d is odd, we find that Gal(Pf ) is isomorphic to a subgroup of WN−1
if d is even, WN−2 if d is odd and εf = −1, and WN if d is odd and εf = 1.

There is an additional constraint on the Galois group of Pf . Suppose that d is odd, εf = 1 and
Pf is separable. We will show later that the discriminant of Pf is in (−1)(d−1)/2d · (Q×)2. Since
d is odd, we deduce that the discriminant of Pf is a square if and only if d is a square. So if d is
odd, Gal(Pf ) will be isomorphic to a subgroup of W+

N .
The following theorem says that the Galois group of Pf is as large as possible, given the above

constraints, for a “random” polynomial f ∈ U(Fq).

Theorem 1.1. For each prime power q > 1, let δ(q) be the proportion of f ∈ U(Fq) for which we
have an isomorphism

Gal(Pf ) ∼=


WN−1 if d is even,
WN−2 if d is odd and εf = −1,
W+
N if d is odd, εf = 1, and d is a square,

WN if d is odd, εf = 1, and d is not a square.

Then δ(q)→ 1 as q →∞.

We will prove Theorem 1.1 in §8 by showing that it satisfies the general framework of Theorem 1.4.
We will use some Hodge theory to compute the field K of §1.3.4 which is needed to distinguish the
cases when d is odd and εf = 1.

Remark 1.2. Let us briefly mention the excluded case where n ≥ 2 is odd. Take any d ≥ 3 and
define U(Fq) as before. For any f ∈ U(Fq), the zeta function of the hypersurface defined by f
will now be of the form Pf (T )/

∏2n
i=0(1− qiT ) for a unique polynomial Pf (T ) ∈ Q[T ] of degree

N := (d− 1)((d− 1)n+1 − 1)/d.
The description of the Galois group of Pf for a “random” f ∈ U(Fq) is now much more straight-

forward. We have δ(q) → 1 as q → ∞, where δ(q) is the proportion of f ∈ U(Fq) for which
Gal(Pf ) is isomorphic to WN . This can be proved with the techniques of this paper and using the
computations of Chavdarov (the work of Chavdarov will be described in §1.7).
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For both even and odd n, the polynomial Pf can be obtained from the characteristic polynomial
of the q-th power Frobenius automorphism acting on the middle étale cohomology group V :=
Hn

ét((Hf )Fq
, Q`) for a prime ` - q. The important difference between the two cases is that the cup

product V × V → H2n((Hf )Fq
, Q`) ∼= Q`(−n) is symmetric when n is even and skew-symmetric

when n is odd.

Remark 1.3. The sign εf can be +1 or −1 and both occur with essentially equal likelihood. More
precisely, for a fixed ε ∈ {±1}, we have |{f ∈ U(Fq) : εf = ε}|/|U (Fq)| → 1/2 as q →∞.

1.3. General setup. Let R be either a finite field or the ring of S-units in a number field F with S
a finite set of non-zero prime ideals of OF . Let U be a smooth scheme over R of relative dimension
at least 1 with geometrically connected fibers.

1.3.1. Representations. Fix a set of rational primes Σ with Dirichlet density 1 such that each ` ∈ Σ
is not equal to the characteristic of R and satisfies ` ≥ 5. For each prime ` ∈ Σ, we fix a continuous
representation

ρ` : π1(UR[1/`])→ O(M`),

where M` is an orthogonal space1 over Z`. Here, and throughout this article, π1 will always refer
to the étale fundamental group. We will suppress the base point in our fundamental groups and
hence its elements and representations will only be determined up to conjugacy. Equivalent to
giving ρ` is to give a lisse Z`-sheaf H` on UR[1/`] of free Z`-modules of finite rank with a symmetric
autoduality pairing H` ×H` → Z`.

From M`, we obtain orthogonal spaces V` := M`/`M` and V` := M` ⊗Z` Q` over F` and Q`,
respectively. Let

ρ` : π1(UR[1/`])→ O(V`)

be the representation obtained by composing ρ` with the obvious reduction map.

1.3.2. Compatibility. Take any R-algebra k that is a finite field and take any point u ∈ U(k).
Let k be a fixed algebraic closure of k. For a prime ` ∈ Σ that is invertible in k, we have
u ∈ U(k) = UR[1/`](k). Viewing u as a morphism Spec k → UR[1/`], we obtain a group ho-
momorphism Gal(k/k) = π1(Spec k) → π1(UR[1/`]) and we denote by Frobu the image of the
Frobenius automorphism of the extension k/k. Observe that Frobu lies in a well-defined conjugacy
class of π1(UR[1/`]). In particular, the polynomial

Pu(T ) := det(I − ρ`(Frobu)T )

is well-defined and has coefficients in Z`.
We shall further assume that the family of representations {ρ`}`∈Σ are compatible, i.e., the above

polynomial Pu(T ) lies in Q[T ] and does not depend on the choice of `. From our compatibility
assumption, the rank of M` as a Z`-module does not depend on `; denote this common rank by N .
We shall assume that N > 2.

Since ρ`(Frobu) lies in O(M`), we have

(1.3) TNPu(1/T ) = εuPu(T ),

where εu := det(−ρ`(Frobu)) ∈ {±1}. From our compatibility assumption, the sign εu does not
depend on the choice of `.

1The definitions of orthogonal spaces and orthogonal groups are recalled in §2.1.
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1.3.3. Big monodromy. For each prime ` ∈ Σ, let OV` be the orthogonal group of V` as an algebraic
group over Q`. For each field k that is an R[1/`]-algebra, we can view ρ`(π1(Uk)) as a subgroup
of OV`(Q`) = O(V`), where k is a fixed algebraic closure of k.

We now make an additional “big monodromy” assumption. Assume that one of the following
holds:

(a) The ring R has characteristic 0 and for any finite field k that is a an R-algebra, the Zariski
closure of ρ`(π1(Uk)) in OV` is either SOV` or OV` for a set of primes ` ∈ Σ with Dirichlet
density 1.

(b) There is a subset Λ ⊆ Σ with Dirichlet density 1 such that for any finite field k that is an
R-algebra, we have

ρ`(π1(Uk)) ⊇ Ω(V`)

for all primes ` ∈ Λ that are not equal to the characteristic of k, where Ω(V`) is the
commutator subgroup of O(V`).

In fact, condition (a) implies condition (b), see Corollary 3.4.

1.3.4. The field K. Suppose that N is even. We shall prove in §4 that there is a unique extension
K/Q of degree at most 2 such that for all sufficiently large ` ∈ Σ, the prime ` splits in K if and
only if the orthogonal space V` is split (in the sense of §2.2).

Consider any point u ∈ U(k) with k a finite field that is an R-algebra. Let ∆u be the discriminant
of Pu. If εu = 1 and Pu is separable, then K = Q(

√
∆u), cf. Proposition 4.1.

1.4. Main result. Fix notation and assumptions as in §1.3. Take any u ∈ U(k), where k is an
R-algebra that is a finite field. Let Gal(Pu) be the Galois group of a splitting field of Pu over Q.
From §1.1 and (1.3), we find that Gal(P ) is isomorphic to a subgroup of WN−1 if N is odd, WN−2
if N is even and εu = −1, and WN if N is even and εu = 1.

Suppose that N is even, εu = 1 and Pu is separable. If K = Q, then the discriminant ∆u of Pu
is a square and hence Gal(Pu) is isomorphic to a subgroup of W+

N .

The following theorem describes the Galois group Gal(Pu) for a “random” u ∈ U (k). The group
Gal(Pu) is usually as large as possible given the constraints discussed above.

Theorem 1.4. For a finite field k that is an R-algebra, we define δ(k) to be the proportion of
u ∈ U(k) for which we have

Gal(Pu) ∼=


WN−1 if N is odd,
WN−2 if N is even and εu = −1,
WN if N is even, εu = 1 and K 6= Q,
W+
N if N is even, εu = 1 and K = Q

(1.4)

(and set δ(k) = 0 when U(k) is empty). Then

lim
k, |k|→∞

δ(k) = 1,

where the limit is over finite fields k that are R-algebras with increasing cardinality.

Remark 1.5.
(i) Theorem 1.4 answers a question of Katz on what the maximal Galois groups are, see the

end of §1 of [Kat12] where it is asked in the setting of elliptic curves (which we will discuss
in §1.6). Katz’s guess is the same as (1.4) except he predicts that W+

N is the group for N
even and εu = 1.
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(ii) Jouve proved a special case of Theorem 1.4, in the context of elliptic curves, where he
showed that Gal(Pu) is either equal to W2n or W+

2n for the appropriate n. See Remark 1.11
for the precise result.

1.5. An effective version. Fix notation and assumptions as in §1.3. Now assume that R = Fq is
a finite field with odd cardinality and that U is a smooth affine curve over Fq that is geometrically
integral. Let C/Fq be the smooth projective curve that contains U as a Zariski open subvariety.
Let g be the genus of C and let b be the number of points in the set C(Fq)−U(Fq).

We also assume that condition (b) of §1.3 holds with a set of primes Λ having natural density
1. Finally, we assume that the representations {ρ`}`∈Σ are all tamely ramified.

In this special setting, the following gives an effective version of Theorem 1.4.

Theorem 1.6. For all n ≥ 1, we have

δ(Fqn) = 1 +O
(
22g+b(2g+ b) q−n/(N2−N+6) log(qn)

)
,

where the implicit constant depends only on Σ.

In particular, note that 1− δ(Fqn) decays exponentially as a function of n ≥ 1. This strengthens
a result of Jouve that we will recall in Remark 1.11.

1.6. Example: L-functions of twists of an elliptic curve. Fix an elliptic curve E defined over
the function field Fq(t), where q is a power of a prime p ≥ 5. Assume that E has multiplicative
reduction at some place v 6= ∞ of Fq(t), where ∞ is the place of Fq(t) with uniformizer t−1. Let
m(t) be the monic squarefree polynomial in Fq[t] whose irreducible factors correspond to the places
v 6=∞ for which E/Fq(t) has bad reduction.

Fix an integer d ≥ 1. For each integer n ≥ 1, define the set

Ud(Fqn) =
{
u ∈ Fqn [t] : u squarefree, deg(u) = d, gcd(u,m) = 1

}
;

it will serve as a parameter space for quadratic twists of E. Identifying a polynomial with the tuple
of its coefficients, we can view Ud(Fqn) as the Fqn-points of an open subvariety Ud of Ad+1

Fq
.

Take any u ∈ Ud(Fqn) and let Eu be an elliptic curve over Fqn(t) obtained by taking a quadratic
twist of E by u (so if E is defined by a Weierstrass equation y2 = x3 + ax+ b with a, b ∈ Fq(t),
then Eu/Fqn(t) can be defined by u · y2 = x3 + ax + b). Let v be a place of Fqn(t) and let
Fv be the corresponding residue field. When Eu has good reduction at v, we define the integer
av = qdeg v + 1− |Eu(Fv)|, where Eu(Fv) is the Fv-points of a good model of Eu over the local
ring at v and deg v is the degree of the field extension Fv/Fq. If Eu has bad reduction at v,
define av = 1, −1 or 0 if Eu has split multiplicative, non-split multiplicative or additive reduction,
respectively, at v. The L-function of the elliptic curve Eu over Fqn(t) is the power series

L(T ,Eu) :=
∏

v good
(1− avT deg v + qdeg vT 2 deg v)−1 ·

∏
v bad

(1− avT deg v)−1,

where the product is over the places v of Fqn(t). Moreover, one can show that L(T ,Eu) is a
polynomial (note that Eu is non-isotrivial since it is a quadratic twist of E which has multiplicative
reduction at some place). Define the polynomial

Pu(T ) := L(T/qn,Eu) ∈ Q[T ].
The degree Nd of Pu(T ) depends only on E and d; we will give an explicit formula below. The
functional equation of L(T ,Eu) says that

TNdPu(1/T ) = εuPu(T )

for a unique εu ∈ {±1} called the root number of Eu.

5



For each place v of Fq(t), we can assign a Kodaira symbol to the elliptic curve E after base
extending to the local field Fq(t)v; the symbol can be computed quickly using Tate’s algorithm.
For each place v of Fq(t), we define integers fv(E), γv(E) and bv(E) using the following table.

Kodaira symbol at v I0 In (n ≥ 1) II III IV I∗0 I∗n (n ≥ 1) IV∗ III∗ II∗
fv 0 1 2 2 2 2 2 2 2 2
γv 1 n/ gcd(2,n) 1 1 3 1 2/ gcd(2,n) 3 1 1
bv 0 0 1 1 1 0 1 1 1 1

The common degree of the polynomials Pu(T ) is

Nd = f∞(Etd) +
∑
v 6=∞

fv(E) deg v− 4 + 2d,

where the sum is over the places v 6= ∞ of Fq(t) and Etd/Fq(t) is the quadratic twist of E by td.
We also define the integers

Dd := γ∞(Etd) ·
∏
v 6=∞

γv(E)
deg v and B :=

∑
v 6=∞

bv(E) deg v.

The following describes the Galois group of the L-function of Eu/Fqn(t) when E is twisted by
a “random” u ∈ Ud(Fqn).

Theorem 1.7. Fix an integer d ≥ 1 so that Nd ≥ max{6B, 3}. Assume further that d ≥ 2 or that
there is a place v 6= ∞ of Fq(t) for which E has Kodaira symbol I∗0. For each n ≥ 1, let δ(qn) be
the proportion of u ∈ Ud(Fqn) for which we have an isomorphism

Gal(Pu) = Gal(L(T ,Eu)) ∼=


WNd−1 if Nd is odd,
WNd−2 if Nd is even and εu = −1,
WNd if Nd is even, εu = 1, and (−1)Nd/2Dd is not a square,
W+
Nd

if Nd is even, εu = 1, and (−1)Nd/2Dd is a square

(1.5)

(and set δ(qn) = 0 when Ud(Fqn) is empty). Then δ(qn)→ 1 as n→∞.

Remark 1.8.
(i) Note that the conditions on d in Theorem 1.7 hold for all sufficiently large d; our constraint

on d is used to apply a big monodromy theorem of Hall.
(ii) Using the work of Katz and Hall, we will verify that the polynomials Pu arise from represen-

tations as in the axiomatic setup of §1.3. The remaining task is to compute the associated
field K from §1.3.4 when Nd is even; this is needed to distinguish the two possible cases
when εu = 1.

(iii) Suppose that Nd is even and take any polynomial u ∈ Ud(Fqn) for which εu = 1 and Pu
is separable. Denote the discriminant of Pu by ∆u. One can show that the square class
∆u · (Q×)2 is independent of the choice of u. Distinguishing the last two cases of (1.5) is a
result of this square class being (−1)Nd/2Dd · (Q×)2.

How does one prove this? Using that Pu is reciprocal and separable, one can prove that

∆u · (Q×)2 = (−1)Nd/2Pu(1)Pu(−1)(Q×)2

= (−1)Nd/2L(1/qn,Eu)L(−1/qn,Eu) · (Q×)2

= (−1)Nd/2L(1/qn,Eu)L(1/qn,Eαu) · (Q×)2,

where α ∈ F×qn is any choice of non-square. Since the values L(1/qn,Eu) and L(1/qn,Eαu)
are non-zero, the Birch and Swinnerton-Dyer conjecture (BSD) give an explicit expression for
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them in terms of interesting invariants of Eu and Eαu, respectively. This part of BSD for
elliptic curves over global function fields has been proved by Tate and Milne. Several of the
invariants that arise, like the cardinality of the (finite!) Tate–Shafarevich group, are squares
and hence do not need to be computed. Proving that (−1)Nd/2L(1/qn,Eu)L(1/qn,Eαu) ∈
(−1)Nd/2Dd · (Q×)2 is then essentially an application of the Tate algorithm. For details
and background, see [Zyw14, §2.4]. The paper [Zyw14], which proves the Inverse Galois
Problem for several groups of the form Ω(V`), were motivated by these computations.

(iv) If Nd is even, then the integer (−1)Nd/2Dd depends only on the parity of d.
(v) Both possibilities for εu occur. Moreover, we have |{u ∈ Ud(Fqn) : εu = ε}|/|U(Fqn)| →

1/2 as n→∞ for each ε ∈ {±1}, cf. Remark 9.2.

Example 1.9. As an example consider a prime q = p ≥ 5 and let E/Fp(t) be the elliptic curve
defined by y2 = x(x− 1)(x− t). Fix an integer d ≥ 2.

The only places v 6=∞ of Fp(t) for which E has bad reduction are those with uniformizers t and
t− 1, and the Kodaira symbol is I2 at both places. The elliptic curve Etd has bad reduction at ∞
and the Kodaira symbol is I2 when d is odd and I∗2 when d is even. We thus have Nd = 2d− 1 if d
is odd and Nd = 2d if d is even. We have B = 0 and d ≥ 2, so the conditions of Theorem 1.7 hold.
When Nd is even, equivalently d is even, we have Dd = 1 and hence (−1)Nd/2Dd = (−1)d = 1.

The set Ud(Fpn) consists of all separable degree d polynomials u ∈ Fpn [t] with u(0)u(1) 6= 0. If d
is even and u ∈ Ud(Fpn), one can show that εu = 1 if and only if u(0)u(1) is a square in F×pn ; we can
express εu as a product of local root numbers that are easy to compute, cf. [CCH05, Theorem 3.1].
For each n ≥ 1, let δ(pn) be the proportion of u ∈ Ud(Fpn) for which we have an isomorphism

Gal(Pu) ∼=
{
W2d−2 if d is odd or if d is even and u(0)u(1) is not a square in F×pn ,
W+

2d if d is even and u(0)u(1) is a square in F×pn .

Theorem 1.7 in this case says that δ(pn)→ 1 as n→∞.

We now give an explicit version where we restrict to certain 1 dimension subvarieties of Ud.

Theorem 1.10. Fix an integer d ≥ 1 as in Theorem 1.7 and fix a polynomial g(t) ∈ Ud−1(Fq). Let
δ(qn) be the proportion of c ∈ Fqn for which the polynomial u := (t− c)g(t) ∈ Fqn [t] is squarefree
and relatively prime to m(t), and for which the Galois group Gal(Pu) = Gal(L(T ,Eu)) satisfies
(1.5). Then

δ(qn) = 1 +O
(
2degm+d(degm+ d) q−n/(N2

d−Nd+6) log(qn)
)
,

where the implicit constant depends only on the j-invariant of E.

Remark 1.11. Theorem 1.10 is a strengthening of the main result of Jouve, cf. [Jou09, Theorem 4.3].
Jouve bounds the number of c ∈ Fq with m(c)g(c) 6= 0 such that Gal

(
L(T ,E(t−c)g(t)/Fq(t))

)
does

not equal the appropriate Galois group W2n or its subgroup W+
2n. Jouve obtains a bound of the

form

O
(
N2
d |G| q1−1/(3.5N2

d−3.5Nd+2) log q
)

for d sufficiently large, where the implicit constant depends only on the j-invariant of E and G is a
certain finite group. A bound for |G| is not given in [Jou09] but one can show that |G| ≤ 2degm+d

using the approach of Lemma 7.1.

We will prove Theorems 1.7 and 1.10 in §9 by applying the axiomatic setup of §1.3 and §1.5.
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1.7. Some related results. This paper was motivated by the work of Chavdarov for which we
now recall a special case. Let U be a geometrically irreducible variety over Fq of positive dimension.
Consider a compatible family of continuous representations {ρ`}` with ρ` : π1(U) → GSp2g(Z`).
For each u ∈ U(Fqn), let Pu ∈ Q[T ] be the corresponding polynomial of degree 2g arising from
the representations ρ`. We also make a big monodromy assumption: suppose that the image of
ρ`(π1(UFq

)) modulo ` is Sp2g(F`) for all sufficiently large `.
Let δ(qn) be the proportion of u ∈ U(Fqn) for which the Galois group of Pu is isomorphic to

W2g. We then have δ(qn)→ 1 as n→∞ by [Cha97, Theorem 2.1]. Note the description of Gal(Pu)
for a “random” u is much simpler than that of Theorem 1.4. One key reason is that the algebraic
groups GSp2g and Sp2g that arise in Chavdarov’s work are connected, while orthogonal groups are
not connected. Also the group Sp2g is simply connected, while special orthogonal groups are not.

Katz has proved a theorem similar to Theorem 1.4, in the setting of L-functions of elliptic
curves, except showing that Pu with the obvious linear factors removed is irreducible, cf. [Kat12,
Theorem 4.1].

As noted in Remark 1.11, Jouve proved an analogue of Theorem 1.6, in the setting of L-functions
of elliptic curves, showing that the Galois group of Pu for a “random” u is isomorphic to eitherW+

2n
or W2n for an appropriate n. One of the main motivations of this paper is to distinguish between
these two cases.

1.8. Overview. We now give a brief overview. In §2, we describe some basic facts about orthogonal
spaces and groups. In particular in §2.4, we study the cardinality of certain conjugacy classes of
orthogonal groups over finite fields. When N is even, the field K from §1.3.4 will be discussed in
§4.

Fix notation and assumptions as in §1.3. Consider a polynomial Pu ∈ Q[T ]. At the beginning of
§1.4, we have given some constraint on the group Gal(Pu). How do we show that Gal(Pu) satisfies
(1.4), i.e., is as large as possible? The idea is fundamental to Galois theory; we will consider the
reduction of Pu modulo various primes ` and compute how it factors in F`[T ]. If we see enough
different kinds of factorizations, we will be able to prove that Gal(Pu) is as large as possible.
The following proposition, which we will prove in §5, is a key ingredient in the proof of our main
theorems.

Proposition 1.12. For each ` ∈ Σ, there are subsets C1(V`), . . . ,C6(V`) of O(V`) such that the
following hold:

(i) Ci(V`) is stable under conjugation by O(V`).
(ii) There are positive absolute constants c1 and c2 such that if ` ∈ Σ satisfies ` ≥ c1, then

|Ci(V`) ∩ κ|
|κ|

≥ c2
N2

for all cosets κ of Ω(V`) in O(V`) and all integers 1 ≤ i ≤ 6.
(iii) Take any u ∈ U(k), where k is a finite field that is an R-algebra. Suppose that for each

1 ≤ i ≤ 6 there is a prime ` ∈ Σ, not equal to the characteristic of k, such that ρ`(Frobu) ⊆
Ci(V`). Then the Galois group of Pu(T ) satisfies (1.4).

The representations {ρ`} are not independent, i.e., a condition imposed on Pu modulo one
prime can restrict the possible reductions modulo other primes. In §3, we use our big monodromy
assumption, and some group theory, to show that the image of the representation

∏
`∈D ρ` is large

for all finite subsets D ⊆ Λ, where Λ is an appropriate subset of Σ with Dirichlet density 1. This
controls how dependent the representations ρ` are.
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Theorem 1.4 and Theorem 1.6 will be proved in §6 and §7, respectively. Our examples from §1.2
and §1.6, will be proved in §8 and §9, respectively. In Appendix A, we state a general version of
Selberg’s sieve. For convenience, we state some equidistribution bounds in Appendix B.

Acknowledgements. Thanks to the referee who made several suggestions that have improved the
exposition.

2. Orthogonal groups and characteristic polynomials

2.1. Orthogonal spaces. Let R be an integral domain whose characteristic is not 2. An orthogonal
space M over R is a free R-module M of finite rank equipped with a symmetric R-bilinear pairing
〈 , 〉 : M ×M → R which induces an isomorphism M → HomR(M ,R), m 7→ 〈m, ·〉.

A homomorphism of orthogonal spaces is an R-module homomorphism that is compatible with the
respective pairings. The orthogonal group of M , denoted by O(M ), is the group of automorphisms
of the orthogonal spaceM . Let SO(M) be the kernel of the determinant map det : O(M)→ {±1}.

2.2. Finite fields. Fix a finite field F with odd characteristic. Let V be an orthogonal space over
F of dimension N ≥ 1. For each v ∈ V with 〈v, v〉 6= 0, we have a reflection rv ∈ O(V ) defined by
x 7→ x− 2〈x, v〉/〈v, v〉 · v. Let

spV : O(V )→ F×/(F×)2

be the spinor norm. The spinor norm is a homomorphism that can be characterized by the property
that it is satisfies spV (rv) = 〈v, v〉 · (F×)2 for all v ∈ V with 〈v, v〉 6= 0. We will denote spV by sp
if V is clear from context. We define Ω(V ) to be the subgroup of O(V ) that is the simultaneous
kernels of the homomorphisms det : O(V )→ {±1} and spV : O(V )→ F×/(F×)2.

The discriminant of V , denoted by disc(V ), is the coset in F×/(F×)2 represented by det(〈vi, vj〉),
where v1, . . . , vN is any basis of V over F. Up to isomorphism, there are two orthogonal spaces
of dimension N over F; these orthogonal spaces are distinguishable by their discriminants. When
N is even, it will be especially important to distinguish these two spaces (for example when N is
odd, the group Ω(V ), up to isomorphism, depends only on N and F; this fails for even N). If N
is even, we say that V is split if disc(V ) = (−1)N/2(F×)2 and non-split otherwise.

Lemma 2.1. We have disc(V ) = spV (−I).

Proof. Let v1, . . . , vN be an orthogonal basis of V . We have −I = rv1rv2 · · · rvN , so

disc(V ) = det(〈vi, vj〉) · (F×)2 =
∏

i
〈vi, vi〉 · (F×)2 =

∏
i
sp(rvi) = sp(−I). �

The following lemma recalls some basic facts about these groups; see [ATLAS, §2.4] for a good
exposition of the groups Ω(V ); proofs can be found in §3.7 and §3.11 of [Wil09] for N 6= 5 and
N = 4, respectively.

Lemma 2.2. Suppose that N ≥ 3 and q > 3. Let Z be the center of Ω(V ).
(i) The map det× sp : O(V )/Ω(V )→ {±1} ×F×/(F×)2 is an isomorphism.
(ii) The group Z is either {I} or {±I}.
(iii) The group Ω(V )/Z is simple except when N = 4 and V is split.
(iv) If N = 4 and V is split, then Ω(V )/Z ∼= PSL2(F)×PSL2(F).
(v) The group Ω(V ) is perfect, i.e., it equals its own commutator subgroup. In particular, Ω(V )

is the commutator subgroup of O(V ).

Remark 2.3. We now give an alternate description of the group Ω(V ). Let SOV be the obvious
algebraic group over F; it is semisimple and has a simply connected cover π : G→ SOV . The group
Ω(V ) is equal to π(G(F)).
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Remark 2.4. We gave an alternate definition of Ω(V`) in condition (b) in §1.3.3. Since ` ≥ 5 and
N > 2, these definitions agree by Lemma 2.2(v).

The following lemma allows to compute the spinor norm for some elements in O(V ) directly
from their characteristic polynomials.

Lemma 2.5. Take any A ∈ O(V ) and set P (T ) = det(I −AT ).
(i) If P (−1) 6= 0, then sp(A) = 2NP (−1)(F×)2.
(ii) If P (1) 6= 0, then sp(A) = 2NP (1) disc(V ).
(iii) If P (1) 6= 0 and P (−1) 6= 0, then disc(V ) = P (1)P (−1)(F×)2.

Proof. If P (−1) 6= 0, then Zassenhaus [Zas62, p.446] shows that sp(A) equals
det((I +A)/2)(F×)2 = 2N det(I +A)(F×)2 = 2NP (−1)(F×)2.

This gives (i), and part (ii) follows by applying (i) with the matrix −A and using Lemma 2.1.
Finally, (iii) follows directly from (i) and (ii). �

Take any A ∈ O(V ) and define P (T ) = det(I −AT ). We have
(2.1) TNP (1/T ) = det(−A)P (T ) = (−1)N det(A)P (T ).
Substituting 1 and −1 into (2.1), we have P (1) = (−1)N det(A)P (1) and P (−1) = det(A)P (−1).
So P is divisibly by 1− T if det(A) = (−1)N+1 and by 1 + T if det(A) = −1. Removing these
obvious linear factors from P , we have the polynomial

f(T ) :=


P (T ) if N is even and det(A) = 1,
P (T )/(1− T 2) if N is even and det(A) = −1,
P (T )/(1− det(A)T ) if N is odd.

Using (2.1), we find that f(T ) ∈ F[T ] is reciprocal, i.e., T deg ff(1/T ) = f(T ). The polynomial
f(T ) is monic and has even degree.

2.3. Reciprocal polynomials.

Lemma 2.6. Fix a field K whose characteristic is not 2. Let f ∈ K[T ] be a monic reciprocal
polynomial of even degree 2n ≥ 2.

(i) We have f(T ) = Tnh(T + 1/T ) for a unique polynomial h ∈ K[T ]. The polynomial h is
monic of degree n.

(ii) We have
disc(f) = (−1)nf(1)f(−1) disc(h)2 = h(2)h(−2) disc(h)2.(2.2)

In particular, f is separable if and only if h is separable and h(2)h(−2) 6= 0.
(iii) Suppose that K = F is a finite field. Further suppose that h is irreducible and h(2)h(−2) 6=

0.
• If h(2)h(−2) is not a square in F, then f is irreducible of degree 2n in F[T ].
• If h(2)h(−2) is a square in F, then f is the product of two irreducible polynomials of
degree n in F[T ].

Proof. See [AV08, Lemma 6] for the existence in part (i); the uniqueness is clear. Denote the
discriminant of f and h by disc(f) and disc(h), respectively. It is straightforward to show that
(2.3) disc(f) = (−1)nf(1)f(−1) disc(h)2 = h(2)h(−2) disc(h)2,
see [AV08, §3] for example. Part (ii) is now immediate from (2.3)

Now suppose that h ∈ F[T ] is irreducible and satisfies h(±2) 6= 0. From part (ii), f is separable.
Let α ∈ F be any root of f ; we have α 6= 0 since f is reciprocal. The extension F(α+ α−1)/F
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has degree n since α+ α−1 is a root of h and h is irreducible of degree n. The extension F(α)/F

thus has degree n or 2n. Since α was an arbitrary root of f , we find that f is either irreducible of
degree 2n or the product of two irreducible polynomials of degree n. From [AV08, Theorem 7], we
deduce that f is irreducible if and only if (−1)nf(1)f(−1) = h(2)h(−2) is not a square in F. �

2.4. Counting elements with a given separable characteristic polynomial. Fix an orthog-
onal space V of dimension N ≥ 2 over a finite field F with odd cardinality q.

In this section, we give an explicit formula for the number of A ∈ O(V ) for which det(I −AT )
is equal to a fixed separable polynomial in F[T ]. These computations are of independent interest.

Fix an integer n ≥ 1 and a monic, separable and reciprocal polynomial f ∈ F[T ] of degree 2n.
There is a unique (monic) polynomial h ∈ F[T ] of degree n such that f(T ) = Tnh(T + 1/T ).
From Lemma 2.6(ii) and the assumption that f is separable, we find that h is separable and
h(2)h(−2) = (−1)nf(1)f(−1) is non-zero.

Let h1, . . . ,hr ∈ F[T ] be the monic irreducible factors of h. Define ei = 1 if hi(2)hi(−2) ∈ F is
a square, otherwise set ei = −1.

Proposition 2.7. Let V be an orthogonal space of even dimension N = 2n over F. Let C be the
set of A ∈ O(V ) for which det(I −AT ) = f(T ).

(i) If disc(V ) 6= f(1)f(−1)(F×)2, then C = ∅.
(ii) If disc(V ) = f(1)f(−1)(F×)2, then C is a conjugacy class of O(V ) and

|C|/|O(V )| = q−n
r∏
i=1

(1− ei/qdeg hi)−1.

We have det(A) = 1 and sp(A) = f(−1)(F×)2 for all A ∈ C.

Proof. We use the background material in Appendix A of [GM02] which holds for a general field
whose characteristic is not 2. Any A ∈ O(V ) with det(I −A) = f(T ) has determinant 1 since
f(T ) is reciprocal.

Consider pairs (V ,A) consisting of an orthogonal space V over F with an automorphism A ∈
SO(V ). We say that two such pairs (V ,A) and (V ′,A′) are equivalent if there is an isomorphism
B : V → V ′ of orthogonal spaces for which A′ = B ◦A ◦B−1. Let V(f) be the set of equivalence
classes of pairs (V ,A) for which det(I −AT ) = f(T ).

We have an extension of F-algebras K/k, where K = F[x]/(f(x)), k = F[y]/(h(y)) and
y = x+ x−1. Since f(x) and h(y) are separable, the algebras K and k will be products of finite
extensions of F. Let ι : K → K be the automorphism which fixes k and satisfies ι(x) = x−1. Let
NK/k : K → k be the norm map α 7→ α · α, where we set α = ι(α).

For each ξ ∈ k×, define the F-vector space Vξ := K and endow it with the F-valued pairing
〈α,β〉ξ = TrK/F(ξαβ). With this bilinear form, Vξ is an orthogonal space of dimension 2n over
F. The map Aξ : K → K defined by Aξ(α) = xα is an automorphism of the orthogonal space Vξ.
By construction, we have det(I −AξT ) = f(T ). If ξ,λ ∈ k× satisfy ξλ−1 = NK/k(δ) for some
δ ∈ K×, then the map B : K → K defined by B(α) = δα gives an equivalence between (Vξ,Aξ)
and (Vλ,Aλ). We thus have a well-defined map

φ : k×/NK/k(K
×)→ V(f), ξ 7→ (Vξ,Aξ).

The map φ is a bijection by [GM02, Theorem A.2].
Since F is finite and K and k are the product of finite extension fields of F, we know that

NK/k : K× → k× is surjective and hence |V(f)| = 1. So there is a pair (V ,A), unique up to
equivalence, that satisfies det(I − AT ) = f(T ). In particular, the set C of B ∈ SO(V ) with
det(I −BT ) = f(T ) is the conjugacy class of A in O(V ). By Lemma 2.5(iii), we have disc(V ) =
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f(1)f(−1)(F×)2 and hence the uniqueness of the equivalence class (V ,A) gives part (i). We have
sp(A) = f(−1)(F×)2 by Lemma 2.5(i). It remains to compute |C|/|O(V )|.

Since C is the conjugacy class of A in O(V ), we have

|C|/|O(V )| = |{B ∈ O(V ) : det(I −BT ) = f(T )}|/|O(V )| = 1/|CentO(V )(A)|.

We have CentO(V )(A) ∼= ker(NK/k : K× → k×) by [GM02, Theorem A.2] . For 1 ≤ i ≤ r, define
fi(T ) := T deg hihi(T + 1/T ). We thus have

CentO(V )(A) ∼=
∏r

i=1
ker(NKi/ki : K×i → k×i ),

where we have the extension of F-algebras Ki/ki with Ki := F[x]/(fi(x)) and ki := F[y]/(hi(y)).
Since NK/k : K× → k× is surjective, we have |CentO(V )(A)| =

∏r
i=1 |K×i |/|k

×
i |.

Suppose that ei = −1, and hence fi(T ) is irreducible by Lemma 2.6(iii). Then Ki/ki is a
quadratic extension of finite fields, so |K×i |/|k

×
i | = |ki|+ 1 = qdeg hi + 1 = qdeg hi(1− ei/qdeg hi).

Suppose that ei = 1, and hence fi(T ) is the product of two irreducible polynomials of degree
deg hi by Lemma 2.6(iii). Then Ki is isomorphic to the product of two fields isomorphic to ki, so
|K×i |/|k

×
i | = |ki| − 1 = qdeg hi − 1 = qdeg hi(1− ei/qdeg hi).

Therefore, |C|/|O(V )| equals

1/|CentO(V )(A)| =
(∏r

i=1
qdeg hi(1− ei/qdeg hi)

)−1
= q−n

∏r

i=1
(1− ei/qdeg hi)−1. �

Proposition 2.8. Let V be an orthogonal space of dimension 2n+ 2 over F and fix a coset β ∈
F×/(F×)2. Let Cβ be the set of A ∈ O(V ) for which det(I −AT ) = (1− T 2)f(T ) and sp(A) = β.
Then Cβ is a conjugacy class of O(V ) and

|Cβ|/|O(V )| = 1
4q
−n

r∏
i=1

(1− ei/qdeg hi)−1.

Proof. Let V1 be the orthogonal space of dimension 2n over F with disc(V1) = f(1)f(−1)(F×)2.
Let V2 and V3 be orthogonal spaces of dimension 1 over F such that disc(V2) = f(−1)β and
disc(V3) = f(1)β disc(V ). We have disc(V1 ⊕ V2 ⊕ V3) = f(1)f(−1) · f(−1)β · f(1)β disc(V ) =
disc(V ). Therefore, the orthogonal spaces V and V1 ⊕ V2 ⊕ V3 are isomorphic; without loss of
generality, assume that V = V1 ⊕ V2 ⊕ V3.

By Proposition 2.7(ii), there is an A1 ∈ SO(V1) such that det(I −A1T ) = f(T ) and sp(A1) =
f(−1)(F×)2. Let A ∈ O(V ) be the automorphism that acts as A1 on V1, −I on V2, and I on V3.
Therefore, det(I −AT ) = f(T )(1 + T )(1− T ) = f(T )(1− T 2). We have

sp(A) = sp(A1) sp(−IV2) sp(IV3) = f(−1) · sp(−IV2) · 1 = f(−1) disc(V2) = β,

where we have used Lemma 2.1. So A belongs to Cβ.
Now take any B ∈ Cβ. Let W2 and W3 be the (one-dimensional) eigenspaces of B corresponding

to the eigenvalues −1 and 1, respectively. Let W1 be the subspace of V perpendicular to W2
and W3. With the pairing from V , the Wi are orthogonal spaces and V = W1 ⊕W2 ⊕W3. The
automorphism B acts on W1; denote by B1 ∈ O(W1) the restriction of B to W1. We have β =
sp(B) = sp(B1) sp(−IW2) sp(IW3) = sp(B1) sp(−IW2) = sp(B1) disc(W2). By Lemma 2.5, we
have sp(B1) = f(−1)(F×)2 and disc(W1) = f(1)f(−1)(F×)2. Therefore, disc(W2) = f(−1)β and
disc(W3) = disc(V ) disc(W1) disc(W2) = f(1)β disc(V ).

By comparing discriminants, we have isomorphisms ϕ1 : V1
∼−→W1, ϕ2 : V2

∼−→W2 and ϕ3 : V3
∼−→

W3 of orthogonal spaces. By Proposition 2.7, we may take ϕ1 so that B1 = ϕ1 ◦A1 ◦ ϕ−1
1 . The

automorphisms ϕ1,ϕ2,ϕ3 give rise to an automorphism ϕ ∈ O(V ) such that B = ϕ ◦ A ◦ ϕ−1.
Therefore, Cβ is a conjugacy class of O(V ).
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Since Cβ is a conjugacy class of O(V ), it has cardinality |O(V )|/|CentO(V )(A)|. The above
argument shows that CentO(V )(A) is equal to

CentO(V1)(A1)×CentO(V2)(−I)×CentO(V3)(I) = CentO(V1)(A1)× {±I} × {±I}.

Therefore,

|Cβ|/|O(V )| = 1/|CentO(V )(A)| = 1/|CentO(V1)(A1)| · 1/2 · 1/2 = 1
4q
−n

r∏
i=1

(1− ei/qdeg hi)−1,

where the last equality uses Proposition 2.7. �

Finally, we consider orthogonal spaces of odd dimension.

Proposition 2.9. Let V be an orthogonal space of dimension 2n+ 1 over F. Fix an ε ∈ {±1}.
Let C be the set of A ∈ O(V ) for which det(I −AT ) = (1− εT )f(T ). Then C is a conjugacy class
of O(V ) and

|C|/|O(V )| = 1
2q
−n

r∏
i=1

(1− ei/qdeg hi)−1.

For A ∈ C, we have det(A) = ε, sp(A) = f(−1)(F×)2 if ε = 1 and sp(A) = f(1) disc(V ) if
ε = −1.

Proof. Let V1 and V2 be the orthogonal spaces of dimension 2n and 1, respectively, over F with
disc(V1) = f(1)f(−1)(F×)2 and disc(V2) = f(1)f(−1) disc(V ). We have disc(V1⊕V2) = disc(V ),
so V and V1 ⊕ V2 are isomorphic. Without loss of generality, we may assume that V = V1 ⊕ V2.

By Proposition 2.7, there is an A1 ∈ SO(V1) such that det(I −A1T ) = f(T ). Let A ∈ O(V )
be the automorphism that acts as A1 on V1 and as scalar multiplication by ε on V2. Therefore,
det(I −AT ) = f(T )(1− εT ) and hence A ∈ C.

Now take any B ∈ C. Let W2 be the (one-dimensional) eigenspace of B corresponding to the
eigenvalue ε. Let W1 be the subspace of V perpendicular to W2. With the pairing from V , W1
and W2 are orthogonal spaces and V = W1 ⊕W2. The automorphism B acts on W1; denote by
B1 ∈ O(W1) the restriction of B to W1.

By Proposition 2.7, we have disc(W1) = f(1)f(−1)(F×)2, so disc(V1) = disc(W1). There-
fore, disc(V2) = disc(V ) disc(V1) equals disc(W2) = disc(V ) disc(W1). So there are isomorphisms
ϕ1 : V1

∼−→W1 and ϕ2 : V2
∼−→W2 of orthogonal spaces. By Proposition 2.7, we may take ϕ1 so that

B1 = ϕ1 ◦A1 ◦ ϕ−1
1 . The automorphisms ϕ1 and ϕ2 give rise to an automorphism ϕ ∈ O(V ) such

that B = ϕ ◦A ◦ϕ−1.
Therefore, C is a conjugacy class of O(V ) containing A and hence has cardinality equal to

|O(V )|/|CentO(V )(A)|. The above argument shows that CentO(V )(A) is equal to

CentO(V1)(A1)×CentO(V2)(εIV2) = CentO(V1)(A1)× {±I}.

Therefore,

|C|/|O(V )| = 1/|CentO(V1)(A1)| · 1/2 = 1
2q
−n

r∏
i=1

(1− ei/qdeg hi)−1,

where the last equality uses Proposition 2.7.
Finally, we compute sp(A). We have sp(A) = sp(A1) sp(εIV2) = f(−1) sp(εIV2), where the last

equality uses Proposition 2.7. If ε = 1, then sp(A) = f(−1)(F×)2. We have sp(−IV2) = disc(V2) =
f(1)f(−1) disc(V ), so if ε = −1, then sp(A) = f(1) disc(V ). �
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3. Big monodromy

Fix notation and assumptions as in §1.3. Let F be the fraction field of R. When R has charac-
teristic 0, and hence F is a number field, we have R = OF [S−1] for a finite set S of non-zero prime
ideals of OF .

For each finite subset D of Σ, define the representation

ρD :=
∏
`∈D

ρ` : π1(UR[D−1])→
∏
`∈D

O(V`)

and the subgroup GgD := ρD(π1(UF )) of
∏
`∈D O(V`). The goal of this section is to prove the

following two propositions.

Proposition 3.1. There is a subset Λ ⊆ Σ with Dirichlet density 1 such that the inclusion

ρD(π1(Uk)) ⊇
∏
`∈D

Ω(V`)(3.1)

holds for all finite subsets D ⊆ Λ and all finite fields k that are R-algebras with characteristic not
in D. Moreover, GgD ⊇

∏
`∈D Ω(V`).

If R is a finite field and condition (b) in §1.3 holds, then we may take Λ to be the set of primes
from condition (b).

Proposition 3.2. Suppose that R has characteristic 0. There is a finite set S′ ⊇ S of non-zero
prime ideals of OF and a subset Λ ⊆ Σ with Dirichlet density 1 such that

ρD(π1(Uk)) = GgD(3.2)

holds for all finite subsets D ⊆ Λ and all finite fields k that are OF [S′−1]-algebras with characteristic
not in D.

Remark 3.3. Note that any subgroup of
∏
`∈D O(V`) containing

∏
`∈D Ω(V`) is a normal subgroup.

This explains why (3.1) and (3.2) are well-defined without the fundamental groups have explicit
base points.

Corollary 3.4. Condition (a) of §1.3 implies condition (b).

Proof. We obtain condition (b) by taking singleton sets D in Proposition 3.1. �

3.1. Proof of Propositions 3.1 and 3.2.

Lemma 3.5. Fix a finite field k that is an R-algebra. There is a subset Λ ⊆ Σ with Dirichlet density
1 such that ρ`(π1(Uk)) ⊇ Ω(V`) holds for all primes ` ∈ Λ that are not equal to the characteristic
of k. If condition (b) in §1.3 holds, then we may take Λ to be the set of primes from condition (b).

Proof. The lemma is immediate if condition (b) holds, so we may assume that condition (a) in
§1.3.3 holds. For ` ∈ Σ not equal to the characteristic of k, let

%` : π1(Uk)→ OV`(Q`)

be the representation obtained by specializing ρ`. By condition (a), there is a subset Λ ⊆ Σ with
Dirichlet density 1, that does not contain the characteristic of k, such that the neutral component
of the Zariski closure of %`(π1(Uk)) is SOV` for all ` ∈ Λ.

Now take any ` ∈ Λ. We have a connected and semisimple group scheme H` := SOM`
over

Z` and base extension by Q` gives SOV` . Let Had
` be the quotient of H` by its center and let

Hsc
` be the simply connected cover of H`. Denote by π : Hsc

` → H` and σ : H` → Had
` the natural

homomorphisms. Define
Γ` := %`(π1(Uk)) ∩ SOV`(Q`);
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it is a compact subgroup of H`(Z`) = SOM`
(Z`). Define the subgroup

Γsc
` := {g ∈ Hsc

` (Q`) : σ(π(g)) ∈ σ(Γ`)}
of Hsc

` (Q`). Observe that Γsc
` ⊆ Hsc

` (Z`).
We now apply a theorem of Larsen. By [Lar95, Theorem 3.17], there is a subset Λ′ ⊆ Λ

with Dirichlet density 1 such that Γsc
` is a maximal compact subgroup of Hsc

` (Q`) for all ` ∈ Λ′.
Therefore, Γsc

` = Hsc
` (Z`) for all ` ∈ Λ′ since Hsc

` (Z`) is a compact subgroups of Hsc
` (Q`).

Take any ` ∈ Λ′ with ` ≥ 11 and let Γ` be the image of Γ` in SO(V`). Since σ is a central isogeny,
we have π(Γsc

` ) ⊆ Γ` · Z, where Z ⊆ H`(Z`) lies in the center of H`. By our choice of `, we have
π(Hsc

` (Z`)) = π(Γsc
` ) ⊆ Γ` ·Z. Reducing modulo `, we find that π(Hsc

` (F`)) ⊆ Γ` ·Z, where Z is
a subgroup of the center of SO(V`). The group π(Hsc

` (F`)) is equal to the commutator subgroup
of H`(F`) = SO(V`); for example, see [Lar95, §1.2] and note that a simply connected group is a
product of simple simply connected groups (this is where we are using ` ≥ 11). So by Lemma 2.2(v),
we have Ω(V`) = π(Hsc

` (F`)) ⊆ Γ` ·Z. The group Ω(V`) is perfect and the commutator subgroup
of Γ` ·Z lies in Γ`. So by starting with Ω(V`) ⊆ Γ` ·Z and taking commutator subgroups, we deduce
that Ω(V`) ⊆ Γ`. In particular, Ω(V`) ⊆ ρ`(π1(Uk)). Since k/k is an abelian extension and Ω(V`)
is perfect, this implies that Ω(V`) ⊆ ρ`(π1(Uk)). �

Lemma 3.6. Take any finite field k that is an R-algebra. Let Λ be the set of primes from
Lemma 3.5. Then for any finite subset D ⊆ Λ not containing the characteristic of k, we have

ρD(π1(Uk)) ⊇
∏
`∈D

Ω(V`).

Proof. Let H be the commutator subgroup of ρD(π1(Uk)); it is a subgroup of
∏
`∈D Ω(V`) which

is the commutator subgroup of
∏
`∈D O(V`) by Lemma 2.2(v).

For each ` ∈ D, we have inclusions Ω(V`) ⊆ ρ`(π1(Uk)) ⊆ O(V`), where the first inclusion
uses our choice of Λ and Lemma 3.5. By taking commutator subgroups and using Lemma 2.2(v),
we deduce that the commutator subgroup of ρ`(π1(Uk)) is Ω(V`) for all ` ∈ D. Therefore, the
projection homomorphism H → Ω(V`) is surjective for all ` ∈ D.

Fix ` ∈ D. Lemma 2.2 implies that the only non-abelian simple group in the composition series
of Ω(V`) is Ω(V`)/Z` where Z` is the center, except when N = 4 and V` is split, then the only one is
PSL2(F`). For distinct `, `′ ∈ D, the non-abelian simple groups occurring in the composition series
of Ω(V`) and Ω(V`′) have different cardinalities (see [ATLAS, §2.4]) and hence are not isomorphic.
Since H is a subgroup of

∏
`∈D Ω(V`) such that the projection H → Ω(V`) is surjective for all

` ∈ D, Goursat’s lemma (for example, [Zyw10a, Lemma A.4]) implies that H =
∏
`∈D Ω(V`). The

lemma follows since ρD(π1(Uk)) ⊇ H. �

If R is a finite field, then Proposition 3.1 follows from Lemma 3.6 since the group ρD(π1(Uk)),
for a finite extension k of R, depends only on an algebraic closure k of R.

For the rest of the proof, we may thus assume that R has characteristic 0. Let R′ be an integral
domain that is an R-algebra. We say that the R′-scheme UR′ is nicely compactifiable if UR′ is open
in a proper smooth R′-scheme X and D := X − UR′ is a divisor of X that has normal crossings
relative to R′.

Lemma 3.7. There is a finite set S′ ⊇ S of non-zero prime ideals of OF such that the R′-scheme
UR′ is nicely compactifiable, where R′ = OF [S′−1].

Proof. By resolution of singularities, the variety UF over F is nicely compactifiable (note that F
is a field of characteristic 0). The lemma follows by choosing integral models for D and X and
inverting enough primes. �
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Fix a set S′ ⊇ S as in Lemma 3.7 and define R′ = OF [S′−1]. By enlarging S′ if necessary, we
may assume that U(Fp) is non-empty for all maximal ideals p /∈ S′ of OF (since U is a smooth
R-scheme with geometric irreducible fibers of dimension at least 1).

Lemma 3.8. Take any finite set D ⊆ Σ. For any finite field k that is an R′-algebra with charac-
teristic not in D, the group ρD(π1(Uk)) is conjugate to GgD in

∏
`∈D O(V`).

Proof. Take any finite set D ⊆ Σ. Since the conclusion only involves the algebraic closure of k, we
may assume that k = Fp for a maximal ideal p /∈ S′ of OF , where p does not divide any prime in
D.

Let Fp be the completion of F at p and denote by Op its valuation ring. For an algebraic closure
F of F , choose an algebraic closure F p of Fp containing F . Since the set U (Fp) is non-empty and
U is smooth, we have U(Op) 6= ∅. The Op-scheme UOp is nicely compactifiable since UR′ has this
property and Op is an R′-algebra. So UOp is open in a proper smooth Op-scheme X for which
D := X −UOp is a divisor of X that has normal crossings relative to Op. Let

%D : π1(UOp)→
∏
`∈D

O(V`)

be the representation obtained from ρD by base extension. By Abhyankar’s Lemma [SGA1, XIII,
5.5], the representation π1(UFp

)→
∏
`∈D O(V`) obtained from %D is tamely ramified at each max-

imal point of the scheme D
Fp
. The Tame Specialization Theorem [Kat90, Theorem 8.17.14] then

implies that the group ρD(π1(UFp
)) is conjugate to ρD(π1(UF p

)) in
∏
`∈D O(V`). Finally, observe

that ρD(π1(UF p
)) is conjugate to GgD in

∏
`∈D O(V`). �

Lemma 3.9. There is a subset Λ ⊆ Σ with Dirichlet density 1 such that GgD ⊇
∏
`∈D Ω(V`) for all

finite subsets D ⊆ Λ.

Proof. Fix a finite field k that is an R′-algebra. Take Λ ⊆ Σ as in Lemma 3.6. For any finite
D ⊆ Λ, the group ρD(π1(Uk)) contains

∏
`∈D Ω(V`) by Lemma 3.6 and is conjugate to GgD by

Lemma 3.8. The lemma is now immediate. �

Proposition 3.1 (in the characteristic 0 case) and Proposition 3.2 are now direct consequences of
Lemmas 3.8 and 3.9.

4. The field K

Fix notation and assumptions as in §1.3 and assume that N is even. In this section, we describe
the field K from §1.3.

Proposition 4.1.
(i) There is a unique extension K/Q with [K : Q] ≤ 2 such that for all sufficiently large ` ∈ Σ,

` splits in K if and only if the orthogonal space V` is split.
(ii) Take any u ∈ U(k), where k is a finite field that is an R-algebra. If Pu(±1) 6= 0, then

K = Q

(√
(−1)N/2Pu(1)Pu(−1)

)
.

(iii) Take any u ∈ U(k), where k is a finite field that is an R-algebra. If εu = 1 and Pu(T ) is
separable, then K = Q(

√
∆u) where ∆u is the discriminant of Pu(T ).

Proof. We claim that there is a point u ∈ U(k) such that Pu(±1) 6= 0, where k is a finite field that
is an R-algebra. By Corollary 3.4, there is a subset Λ ⊆ Σ of Dirichlet 1 for which condition (b)
of §1.3.3 holds. Fix a prime ` ∈ Λ and choose an element g ∈ Ω(V`) such that det(I + g) 6= 0 and
det(I − g) 6= 0. Since ` ∈ Λ, there is a finite field k that is an R-algebra with characteristic not
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equal to ` such that ρ`(π1(Uk)) ⊇ Ω(V`). By equidistribution, there is a finite extension k′/k and
a point u ∈ U(k′) such that ρ`(Frobu) is conjugate to g in O(V`). So Pu(±1) ≡ det(I ∓ g) 6≡ 0
(mod `). In particular, Pu(±1) 6= 0 which proves the claim.

Now take any u ∈ U(k) such that Pu(±1) 6= 0, where k is a finite field that is an R-algebra (such
a point u exists by the above claim). The polynomial Pu is reciprocal since Pu(±1) 6= 0. Define
the field

K := Q

(√
(−1)N/2Pu(1)Pu(−1)

)
.

Let Σ0 be the set of odd primes ` ∈ Σ for which Pu(±1) 6≡ 0 (mod `). Take any prime ` ∈ Σ0
and define A := ρ`(Frobu) ∈ O(V`). We have det(I − TA) ≡ Pu(T ) (mod `), so A ∈ SO(V`) since
Pu is reciprocal. By Lemma 2.5(iii), V` is split if and only if (−1)N/2Pu(1)Pu(−1) modulo ` is a
(non-zero) square in F`. So for any ` ∈ Σ0, we deduce that ` splits in K if and only if V` is split. In
particular, for all sufficiently large ` ∈ Σ, we find that ` splits in K if and only if V` is split. Since
Σ has density 1, this gives a characterization of K that does not depend on our choice of u. Parts
(i) and (ii) now follow since K does not depend on u.

Finally, take any u ∈ U(k) for which εu = 1 and Pu(T ) is separable, where k is a finite field
that is an R-algebra. Let ∆u be the discriminant of Pu; it is non-zero since Pu is separable. The
polynomial Pu has even degree and is reciprocal by (1.3) since εu = 1. By Lemma 2.6(ii), we have
∆u ∈ (−1)N/2Pu(1)Pu(−1) · (Q×)2. Therefore, Q(

√
∆u) = Q(

√
(−1)N/2Pu(1)Pu(−1)). Part (iii)

now follows from (ii). �

5. Proof of Proposition 1.12

Fix notation and assumptions as in §1.3. In this section, we prove Proposition 1.12 which will
be used to apply the sieve theory in the proofs of Theorems 1.4 and 1.6.

5.1. Big subgroups of W2n. We first give a criterion to prove that a subgroup of W2n contains
W+

2n. We shall assume that n ≥ 2; the case n = 1 is not interesting since W+
2 = 1.

We may viewW2n as a subgroup of the group of permutationsSX of the setX = {±e1, . . . ,±en}.
Let ε1 : W2n → {±1} be the homomorphism obtained by composing the inclusion W2n ↪→ SX with
the signature map. The kernel of ε1 is the subgroup W+

2n. By considering the action of W2n on
the n pairs pi := {ei,−ei} with 1 ≤ i ≤ n, we obtain a homomorphism ϕ : W2n → Sn. Let
ε2 : W2n → {±1} be the homomorphism obtained by composing ϕ with the signature map.

Lemma 5.1. Let G be a subgroup of W2n. Suppose that there exist g1, g2, g3, g4 and g5 in G such
that the following hold:

• ϕ(g1) ∈ Sn is an n-cycle,
• ϕ(g2) ∈ Sn is a p-cycle for some prime p > n/2,
• ϕ(g3) ∈ Sn is a transposition,
• g4 ∈ SX satisfies ϕ(g4) = 1 and is a product of one or two disjoint transpositions,
• ε1(g5)ε2(g5) = −1.

Then G equals W+
2n or W2n.

Proof. A lemma of Bauer, see [Gal73, p.98], says that Sn has no proper transitive subgroups that
contain a transposition and a cycle of prime order greater than n/2. The properties of g1, g2 and
g3 thus ensure that ϕ(G) = Sn.

Let H be the kernel of ϕ : W2n → Sn; these are the permutations of X that fix all the pairs
pi = {ei,−ei}. Let H+ be the kernel of ε1|H : H → {±1}.
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First suppose that g4 is the product of two disjoint transpositions. We have g4 ∈ H since
ϕ(g4) = 1. Without loss of generality, we may assume that g4 interchanges e1 and −e1, interchanges
e2 and −e2, and fixes all the other ±ej .

Take any 1 ≤ i ≤ n. Since ϕ(G) = Sn, there is an element σ ∈ G satisfying ϕ(σ) = (1i).
Then σg4σ

−1 ∈ G interchanges e2 and −e2, ei and −ei, and fixes all the other ±ej . Therefore,
hi := σg4σ

−1g−1
4 ∈ G interchanges e1 and −e1, ei and −ei, and fixes all the other ±ej . Observe

that hi is in the commutator subgroup [G,G] of G.
The elements of H that are the product of two disjoint transpositions are precisely the elements

hi with 1 < i ≤ n or hihj with 1 < i < j ≤ n. We thus have H+ ⊆ G since the group H+

is generated by the elements in H that are the product of two disjoint transpositions. Moreover,
H+ ⊆ [G,G].

Since ϕ(G) = Sn, the group ϕ([G,G]) equals the commutator subgroup of Sn; this is the
alternating group An since n ≥ 2. Therefore, the cardinality of the group [G,G] is divisible by
|H+| · |An| = 2n−1 · n!/2 = 2n−2n!. We have |W2n| = 2nn!, so [W2n : [G,G]] ≤ 4. Since [G,G] is
contained in the commutator subgroup [W2n,W2n], we have

m := [W2n : [W2n,W2n]] ≤ [W2n : [G,G]] ≤ 4.

However, we have m ≥ 4 since the quotient of W2n by ker(ε1) ∩ ker(ε2) is isomorphic to {±1} ×
{±1}. Therefore, m = 4 and hence

[G,G] = [W2n,W2n] = ker(ε1) ∩ ker(ε2).

We have ε2(G) = {±1} since ϕ(G) = Sn. Therefore, G must be one of the groups ker(ε1ε2),
ker(ε1) = W+

2n or W2n. The existence of g5 rules out the case G = ker(ε1ε2). Therefore, G equals
W+

2n or W2n.

Now suppose that g4 ∈ G is a transposition. We have g4 ∈ H since ϕ(g4) = 1. Using that
ϕ(G) = Sn, an argument similar to the one above shows that G contains every transposition in
H. We have H ⊆ G since H is generated by transpositions. Therefore, G is a group of order
|H| · |Sn| = 2nn!. Since G has the same cardinality as W2n, we conclude that G = W2n. �

Remark 5.2. Note that in [Jou09, Lemma 4.4(ii)], which is an analogue of our Lemma 5.1, one
needs to add another condition to rule out the case where the subgroup of W2n is ker(ε1ε2).

5.2. A criterion for a maximal Galois group. Fix an integer n ≥ 1 and let F be a finite field
of odd characteristic. Let Pn(F) be the set of monic polynomials h ∈ F[T ] of degree n which are
separable and satisfy h(±2) 6= 0.
If n ≥ 2, define the following sets:

• Let Hn,1(F) be the set of irreducible h ∈ Pn(F).
• Let Hn,2(F) be the set of h ∈ Pn(F) that have an irreducible factor whose degree is a prime
greater than n/2.
• Let Hn,3(F) be the set of h ∈ Pn(F) that factor as a product of an irreducible polynomial
of degree 2 and irreducible polynomials of odd degree.
• Let Hn,4(F) be the set of h ∈ Pn(F) that have no irreducible factors of even degree, and
for which the polynomial Tnh(T + 1/T ) is the product of one or two quadratic irreducible
polynomials and irreducible polynomials of odd degree.
• Let Hn,5(F) be the set of h ∈ Pn(F) such that the polynomial h(T ) · Tnh(T + 1/T ) has an
odd number of irreducible factors of even degree (counted with multiplicity).
• Let Hn,6(F) be the set of h ∈ Pn(F) such that the polynomial Tnh(T + 1/T ) is the product
of a quadratic irreducible polynomial and irreducible polynomials of odd degree.
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If n = 1, define Hn,i(F) = P1(F) for all 1 ≤ i ≤ 5 and let Hn,6(F) be the set of h ∈ P1(F) such
that the quadratic polynomial Th(T + 1/T ) is irreducible.

For 1 ≤ i ≤ 6, we define F2n,i(F) to be the set of polynomials Tnh(T + 1/T ) with h ∈ Hn,i(F);
they are monic, reciprocal and have degree 2n. By Lemma 2.6(ii), the condition that h is separable
and h(±2) 6= 0 ensures that each polynomials f ∈ F2n,i(F) is separable and f(±1) 6= 0.

The above definitions are justified by the following criterion.

Proposition 5.3. Fix a monic, reciprocal and separable polynomial f ∈ Q[T ] of even degree 2n ≥ 2.
Let ∆ be the discriminant of f . Denote by Gal(f) the Galois group of a splitting field of f over Q.
Assume that for each 1 ≤ i ≤ 5, there is an odd prime ` such that the coefficients of f are integral
at ` and f mod ` ∈ F`[T ] lies in F2n,i(F`).

(i) If ∆ is a square in Q, then Gal(f) ∼= W+
2n.

(ii) If ∆ is a non-square in Q, then Gal(f) ∼= W2n.
(iii) If there is an odd prime ` such that the coefficients of f are integral at ` and f mod ` ∈ F`[T ]

lies in F2n,6(F`), then Gal(f) ∼= W2n.

Proof. If n = 1, then (i) and (ii) are immediate since f is a separable quadratic polynomial and
the groups W+

2 and W2 have cardinality 1 and 2, respectively. So assume that n ≥ 2. As in §1.1,
we have an injective homomorphism

ψ : Gal(f) ↪→W2n.
Take any prime ` for which the coefficients of f are integral at ` and f modulo ` is separable with
the same degree as f . Then ψ is unramified at ` and the cycle type of ψ(Frob`) in SX is given by
the degrees of the irreducible factors of f modulo `. The cycle type of ϕ(ψ(Frob`)) in Sn is given
by the degrees of the irreducible factors of h modulo `.

• Since h mod `1 is irreducible in F`1 [T ], we find that ϕ(ψ(Frob`1)) is a n-cycle in Sn.
• Since h mod `2 ∈ F`2 [T ] has an irreducible factor of prime degree p > n/2, we find that
some power of ϕ(ψ(Frob`2)) is a p-cycle in Sn.
• Since h mod `3 ∈ F`3 [T ] is the product of an irreducible quadratic polynomial and irre-
ducibles of odd degree, we find that some power of ϕ(ψ(Frob`3)) is a transposition in Sn.
• Since h mod `4 has no irreducible factors of even degree and f mod `4 is the product of one
or two quadratic irreducible polynomials and irreducible polynomials of odd degree, we find
that there is a power g of ψ(Frob`4) such that ϕ(g) = 1 and g is a product of one or two
disjoint transpositions in SX .
• Since hf mod `5 has an odd number of irreducible factors of even degree, we find that

ε1(ψ(Frob`5))ε2(ψ(Frob`5)) = −1.

By Lemma 5.1, the group ψ(Gal(f)) is either W+
2n or W2n. The image of ψ is a subgroup of W+

2n
if and only if the discriminant ∆ of f is a square in Q. So ψ(Gal(f)) = W+

2n if ∆ is a square in Q

and ψ(Gal(f)) = W2n if ∆ is not a square in Q. This proves parts (i) and (ii).
Finally, suppose there is a prime ` as in the statement of part (iii). Then ψ is unramified at `

and the permutation ψ(Frob`) in SX is the product of disjoint cycles where one is a transposition
and the rest have odd length. Therefore, ε1(ψ(Frob`)) = −1 and hence ψ(Gal(f)) 6= W+

2n. So,
ψ(Gal(f)) = W2n. �

For cosets α,β ∈ F×/(F×)2, we define Fα,β
2n,i(F) to be the set of f ∈ F2n,i(F) such that f(±1) 6= 0,

f(1) ∈ α, f(−1) ∈ β, and f has at most eight irreducible factors. The following lower bounds
for the cardinality of Fα,β

2n,i(F) will be important later for counting certain subsets of orthogonal
groups.
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Proposition 5.4. Fix α,β ∈ F×/(F×)2 and an integer 1 ≤ i ≤ 6. Assume that αβ 6= (−1)n(F×)2

if i = 6. Then

(5.1) |Fα,β
2n,i(F)| ≥

c

n2 q
n
(
1 +O(1/q)

)
,

where q is the cardinality of F, and the constant c > 0 and the implicit constant are absolute.

Before proving the proposition, we need a lemma. For m ≥ 1 and cosets α,β ∈ F×/(F×)2, let
Iα,β
m be the set of irreducible h ∈ Pm(F) such that h(2) ∈ α and h(−2) ∈ β. Set Iα,β

0 = {1}.

Lemma 5.5. For m ≥ 1 and cosets α,β ∈ F×/(F×)2, we have |Iα,β
m | = 1

4m

(
qm+O(qm/2)

)
, where

the implicit constant is absolute.

Proof. For each d ≥ 1, let Fqd be the degree d extension of F. Choose elements a ∈ α and b ∈ β.
The map

{ζ ∈ Fqm : F(ζ) = Fqm} → {h ∈ F[T ] : h monic and irreducible of degree m}

defined by ζ 7→ NFqm/F(T − ζ) :=
∏
σ∈Gal(Fqm/F)(T − σ(ζ)) is surjective and m-to-1.

Fix ζ ∈ Fqm such that F(ζ) = Fqm , and set h(T ) = NFqm/F(T − ζ). We have h(±2) 6= 0 if
and only if ζ 6= ±2. Since NFqm/F induces an isomorphism F×qm/(F×qm)2 → F×/(F×)2, we have
h(2) ∈ α and h(−2) ∈ β if and only if 2− ζ ∈ a(F×qm)2 and −2− ζ ∈ b(F×qm)2. Therefore,

m|Iα,β
m (F)| = |{ζ ∈ Fqm − {±2} : F(ζ) = Fqm , 2− ζ = ax2 and − 2− ζ = by2 for some x, y ∈ Fqm}|

= 1
4 |{(x, y) ∈ F2

qm : ax2 − by2 = 4}|+O(|{ζ ∈ Fqm : F(ζ) 6= Fqm}|+ 1).

The projective closure of the plane curve ax2− by2 = 4 is smooth of genus 0. So m|Iα,β
m (F)| equals

qm/4 +O(|{ζ ∈ Fqm : F(ζ) 6= Fqm}|+ 1). Finally, note that

|{ζ ∈ Fqm : F(ζ) 6= Fqm}| ≤
∑

d|m,d<m
|Fqd | ≤

∑
d≤m/2

qd = (qbm/2c+1 − 1)/(q− 1) = O(qm/2). �

Proof of Proposition 5.4. For cosets α,β ∈ F×/(F×)2, we define Hα,β
n,i (F) to be the set of h ∈

Hn,i(F) such that h(±2) 6= 0, h(2) ∈ α, h(−2) ∈ β, and h has at most four irreducible factors. By
Lemma 2.6(iii), the polynomial Tnh(T + 1/T ) ∈ F[T ] has at most eight irreducible factors for all
h ∈ Hn,i(F). We thus have an injective map

Hα,β
n,i (F) ↪→ F

α,(−1)nβ
2n,i (F), h 7→ Tnh(T + 1/T ).

It thus suffices to show that

|Hα,β
n,i (F)| ≥

c

n2 · (q
n +O(qn−1)),

where c > 0 and the implicit constant are absolute, and αβ 6= (F×)2 if i = 6.

The following inclusions involving Hα,β
n,i (F) make use of Lemma 2.6(iii) when i ∈ {4, 5, 6}. Let γ

be the non-identity coset of F×/(F×)2. When n = 1, we have Hα,β
n,i (F) = Iα,β

n for 1 ≤ i ≤ 5. We
also have Hα,β

1,6 (F) = Iα,β
1 when αβ = γ.

Now suppose that n ≥ 2.
• We have Iα,β

n = Hα,β
n,1 (F).

• By Bertrand’s postulate, there exists a prime n/2 < p ≤ n and hence

{h1h2 : (h1,h2) ∈ Iα,β
p ×I1,1

n−p and h1 6= h2} ⊆ Hα,β
n,2 (F).
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• If n is odd, then {h1h2 : (h1,h2) ∈ Iα,β
2 ×I1,1

n−2} ⊆ H
α,β
n,3 (F).

If n ≥ 4 is even, then {h1h2h3 : (h1,h2,h3) ∈ Iα,β
2 ×I1,1

1 ×I1,1
n−3 and h2 6= h3} ⊆ Hα,β

n,3 (F).
If n = 2, then Iα,β

2 ⊆ Hα,β
n,3 (F).

• If αβ = 1 and n is odd, then

{h1h2h3 : (h1,h2,h3) ∈ Iα,βγ
1 ×I1,γ

1 ×I1,1
n−2 and h1,h2,h3 distinct} ⊆ Hα,β

n,4 (F)

and {h1h2 : (h1,h2) ∈ Iα,β
2 ×I1,1

n−2} ⊆ H
α,β
n,5 (F).

• If αβ = 1 and n = 2, then

{h1h2 : (h1,h2) ∈ Iα,βγ
1 ×I1,γ

1 and h1 6= h2} ⊆ Hα,β
n,4 (F)

and Iα,β
2 ⊆ Hα,β

n,5 (F).
• If αβ = 1 and n ≥ 4 is even, then

{h1h2h3h4 : (h1,h2,h3,h4) ∈ Iα,βγ
1 ×I1,γ

1 ×I1,1
1 ×I1,1

n−3 : h1,h2,h3,h4 distinct} ⊆ Hα,β
n,4 (F)

and {h1h2h3 : (h1,h2,h3) ∈ Iα,β
2 ×I1,1

1 ×I1,1
n−3 : h2 6= h3} ⊆ Hα,β

n,5 (F).
• If αβ = γ and n is odd, then

{h1h2h3 : (h1,h2,h3) ∈ Iα,β
1 ×I1,1

1 ×I1,1
n−2, h1,h2,h3 distinct}

is a subset of Hα,β
n,4 (F) and H

α,β
n,5 (F).

• If αβ = γ and n is even, then

{h1h2 : (h1,h2) ∈ Iα,β
1 ×I1,1

n−1 and h1 6= h2}

is a subset of Hα,β
n,4 (F) and H

α,β
n,5 (F).

• If αβ = γ and n is odd, then

{h1h2h3 : (h1,h2,h3) ∈ Iα,β
1 ×I1,1

1 ×I1,1
n−2 and h2 6= h3} ⊆ Hα,β

n,6 (F).

If αβ = γ and n is even, then {h1h2 : (h1,h2) ∈ Iα,β
1 ×I1,1

n−1} ⊆ H
α,β
n,6 (F).

The proposition follows immediately from the above inclusions and Lemma 5.5. �

5.3. Proof of Proposition 1.12. First fix a prime ` ∈ Σ. Let κ be any coset of Ω(V`) in O(V`).
There are unique ε ∈ {±1} and δ ∈ F×` /(F×` )

2 such that det(κ) = {ε} and sp(κ) = {δ}.
Take any 1 ≤ i ≤ 6. We now define a subset Ci(κ) ⊆ κ that is stable under conjugacy by O(V`)

(the sets of polynomials F2n,i(F`) are those from §5.2):
• If N is odd, let Ci(κ) be the set of A ∈ κ such that det(I −AT )/(1− εT ) lies in FN−1,i(F`).
• If N is even and ε = −1, let Ci(κ) be the set of A ∈ κ such that det(I −AT )/(1− T 2) lies
in FN−2,i(F`).
• If N is even, ε = 1 and i 6= 6, let Ci(κ) be the set of A ∈ κ such that det(I −AT ) lies in
FN ,i(F`).
• If N is even, ε = 1 and i = 6, define Ci(κ) = κ.

Lemma 5.6. There is a positive constant c such that

|Ci(κ)|
|Ω(V`)|

≥ c

N2 · (1 +O(1/`))

holds for all 1 ≤ i ≤ 6, where c and the implicit constant are absolute.
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Proof. • Suppose that N is odd.
Fix any α,β ∈ F×` /(F×` )

2 satisfying αβ 6= (−1)(N−1)/2(F×` )
2 such that δ = β if ε = 1 and

δ = α disc(V`) if ε = −1. Take any f ∈ Fα,β
N−1,i(F`). Proposition 2.9 implies that

Cf := {A ∈ O(V`) : det(I −AT ) = (1− ε)f(T )}
is a conjugacy class of O(V`) and

|Cf |/|Ω(V`)| ≥ 2`−(N−1)/2(1 +O(1/`))

with an absolute implicit constant. Note that for the constant to be absolute, we have used that f
has at most eight irreducible factors.

By Proposition 2.9 and our choice of α and β, we have det(Cf ) = {ε} and sp(Cf ) = {δ}, and
thus Cf ⊆ κ. Therefore,

|Ci(κ)|/|Ω(V`)| ≥ |Fα,β
N−1,i(F`)| · 2`−(N−1)/2(1 +O(1/`))� 1/N2 · (1 +O(1/`))

with absolute constants, where the last inequality uses Proposition 5.4.
• Suppose that N is even and ε = −1.
Take any α,β ∈ F×` /(F×` )

2 and any f ∈ Fα,β
N−2,i(F`). Proposition 2.8 implies that

Cf := {A ∈ O(V`) : det(I −AT ) = (1− T 2)f(T ) and sp(A) = δ}

is a conjugacy class of O(V`) and |Cf |/|Ω(V`)| ≥ `−(N−2)/2(1+O(1/`)) with an absolute constant.
We have Cf ⊆ κ, so

|Ci(κ)|/|Ω(V`)| ≥ |Fα,β
N−2,i(F`)| · `−(N−2)/2(1 +O(1/`))� 1/N2 · (1 +O(1/`))

with absolute constants, where the last inequality uses Proposition 5.4.
• Suppose that N is even and ε = 1.
If i = 6, we have Ci(κ) = κ and the lemma is easy.

Now suppose that 1 ≤ i ≤ 5. Take α,β ∈ F×` /(F×` )
2 such that δ = β and disc(V`) = αβ. Take

any f ∈ Fα,β
N ,i (F`). Proposition 2.7(ii) implies that

Cf := {A ∈ O(V ) : det(I −AT ) = f(T )}

is a conjugacy class of O(V`) and |Cf |/|Ω(V`)| ≥ 4`−N/2(1 +O(1/`)) with an absolute constant.
By Proposition 2.7(ii), we have det(Cf ) = {1} and sp(Cf ) = {f(−1)(F×` )2} = {β}. Therefore,

|Ci(κ)|/|Ω(V`)| ≥ |Fα,β
N ,i (F`)| · 4`−(N−2)/2(1 +O(1/`))� 1/N2 · (1 +O(1/`))

with absolute constants, where the last inequality uses Proposition 5.4 (recall that i 6= 6). �

For any integer 1 ≤ i ≤ 6, define
Ci(V`) :=

⋃
κ

Ci(κ),

where the union is over the four cosets κ of Ω(V`) in O(V`). The set Ci(V`) is stable under conjuga-
tion by O(V`). By Lemma 5.6, we have |Ci(V`)∩ κ|/|κ| = |Ci(κ)|/|Ω(V`)| � 1/N2 · (1+O(1/`))
for each coset κ. There are thus positive absolute constants c1 and c2 such that if ` ≥ c1, then
|Ci(V`) ∩ κ|/|κ| ≥ c2/N2 for all cosets κ of Ω(V`) in O(V`).

We have now constructed sets {Ci(V`)}`∈Σ for all 1 ≤ i ≤ 6. It thus remains to verify that (iii)
holds with these sets. Take any u ∈ U(k), where k is a finite field that is an R-algebra. Suppose
that for each 1 ≤ i ≤ 6, there is a prime `i ∈ Σ for which ρ`i(Frobu) ∈ Ci(V`i).

Let fu be the polynomial obtained from Pu by the formula (1.2). Set n = deg(fu)/2. If N is
odd, we have N = 2n+ 1. If N is even, then N is 2n or 2n+ 2 when εu is 1 or −1, respectively.
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For each 1 ≤ i ≤ 6, with i 6= 6 when N is even and εu = 1, the inclusion ρ`i(Frobu) ⊆ Ci(V`i)
implies that fu modulo `i lies in F2n,i(F`). If N is odd or εu = −1, Proposition 5.3(iii) implies that
the Galois group of fu, and hence also Pu, is isomorphic to W2n.

Finally, suppose that N is even and εu = 1. The polynomial Pu = fu is separable since its
reduction modulo `1 is separable. By Proposition 4.1(iii), the discriminant of Pu is a square in Q

if and only if K = Q. From Proposition 5.3(i) and (ii), we deduce that the Galois group of Pu is
isomorphic to W+

N if K = Q and WN if K 6= Q.

6. Proof of Theorem 1.4

Fix notations and assumptions as in §1.3.
Suppose that R has characteristic 0 and hence R = Z[S−1] for a finite set S of non-zero prime

ideals of OF . Take S′ ⊇ S and Λ ⊆ Σ as in Proposition 3.2. For the finite number of p ∈ S′−S, we
can base extend everything to Fp and the assumptions of §1.3 still hold with the base ring Fp. So
Theorem 1.4 in the finite field case, would imply that δ(k)→ 1 as we vary over all finite extensions
k of Fp for some p ∈ S′ − S. So assuming Theorem 1.4 in the finite field case, we can reduce to
the case where we base extend everything to R[S′−1] = Z[S′−1]. So without loss of generality,
we may assume that Proposition 3.2 holds with S′ = S and Λ ⊆ Σ a set of Dirichlet density 1.
By replacing Λ by an appropriate subset with Dirichlet density 1, we may further assume that it
satisfies Proposition 3.1.

If R is a finite field, we take Λ as in Proposition 3.1.
Let c1 ≥ 5 and c2 be positive absolute constants as in Proposition 1.12(ii). By replacing c2 with

a smaller value, we may assume that 0 < c2/N2 < 1. By removing a finite number of primes from
Λ, we may also assume that each prime ` ∈ Λ is greater than c1.

Take any ε > 0. We will prove that
1− δ(k) < ε+O(|k|−1/2)(6.1)

holds for all finite fields k that are R-algebras, where the implicit constant does not depend on k.
This will imply that 0 ≤ lim supk, #k→∞(1− δ(k)) ≤ ε where k varies over finite fields that are R-
algebras with increasing cardinality. Since ε > 0 was arbitrary, we will then have limk, #k→∞ δ(k) =
1 which will complete the proof of Theorem 1.4.

Since 0 < c2/N2 < 1, we can choose an integer M ≥ 1 satisfying (1− c2/N2)M < ε/6. Since Λ
is infinite, we can choose a finite set D ⊆ Λ of cardinality M . It suffices to prove that (6.1) holds
when the characteristic of k does not lie in D (we can then repeat the proof with a different set
D ⊆ Λ of cardinality M that is disjoint from the original one).

Take any finite field k that is an R-algebra and whose characteristic does not lie in D. If U(k)
is empty, then |k| is bounded and hence (6.1) holds for an appropriate implicit constant. We may
thus assume that U(k) is non-empty

For each integer 1 ≤ i ≤ 6, define the set
Si = {u ∈ U(k) : ρ`(Frobu) 6⊆ Ci(V`) for all ` ∈ D},

where the sets Ci(V`) are from Proposition 1.12. Proposition 1.12(iii) implies that

{u ∈ U(k) : Pu(T ) does not satisfy (1.4)} ⊆
⋃6
i=1
Si.

Therefore,

1− δ(k) = |{u ∈ U (k) : Pu(T ) does not satisfy (1.4)}|
|U(k)|

≤
6∑
i=1
|Si|/|U (k)|.(6.2)
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Now fix any 1 ≤ i ≤ 6. Define ρD as in §3. We have
Si = {u ∈ U(k) : ρD(Frobu) ⊆ Bi},

where Bi =
∏
`∈D(O(V`)− Ci(V`)). Define G = ρD(π1(Uk)) and Gg = ρD(π1(Uk)). Note that

Gg is a normal subgroup of G and G/Gg is cyclic. Let hGg be the Gg-coset of G that contains
ρD(Frobu) for all u ∈ U(k).

Lemma 6.1. We have
|Si|
|U(k)|

=
|Bi ∩ hGg|
|Gg|

+O(|k|−1/2),

where the implicit constant does not depend on the choice of k.

Proof. Define the group GgD := ρD(π1(UF )), where F is the fraction field of R.
We claim that the groups Gg and GgD are conjugate in

∏
`∈D O(V`). The claim is easy if R is

a finite field since then k is a finite extension of F and the groups Gg and GgD depend only on
the common algebraic closure of these fields. The case where R has characteristic 0 follows from
Proposition 3.2; recall that we have reduced to the case where the proposition holds with S′ = S.

The lemma follows from an equidistribution result with enough control over the error terms,
for example [KS99, Theorem 9.7.13]. The above claim is needed to verify condition 9.7.2 (4) in
[KS99]. �

By (6.2) and Lemma 6.1, we deduce that

1− δ(k) ≤
6∑
i=1

|Bi ∩ hGg|
|Gg|

+O(|k|−1/2),(6.3)

where the implicit constant does not depend on k.
We now bound |Bi ∩ hGg|/|Gg| for 1 ≤ i ≤ 6. By Proposition 3.1 and our choice of Λ, we have

Gg ⊇
∏
`∈DΩ(V`). Denote by m the index of

∏
`∈DΩ(V`) in Gg. The Gg-coset hGg is the disjoint

union of m cosets of
∏
`∈DΩ(V`); let κ be any of these m cosets. We have κ =

∏
`∈D κ`, where κ`

is a Ω(V`)-coset in O(V`). Therefore,
|Bi ∩ κ|
|κ|

=
∏
`∈D

(
1− |Ci(V`) ∩ κ`|

|κ`|

)
≤ (1− c2/N2)|D| = (1− c2/N2)M < ε/6,

where the first inequality uses Proposition 1.12(ii) (note that ` ≥ c1 for all ` ∈ Σ) and the second
inequality uses our choice of M . Therefore,

|Bi ∩ hGg|
|Gg|

=
∑

κ⊆hGg

|Bi ∩ κ|
m|κ|

=
1
m

∑
κ⊆hGg

|Bi ∩ κ|
|κ|

< ε/6,

where the sums are over the m cosets of
∏
`∈DΩ(V`) contained in hGg. We deduce (6.1) from (6.3)

and the above bound for |Bi ∩ hGg|/|Gg|.

7. Proof of Theorem 1.6

Fix notations and assumptions as in §1.3 and §1.5. Let Λ be the set of natural density 1
that satisfies condition (b) of §1.3.3. Let c1 ≥ 5 and c2 be positive absolute constants as in
Proposition 1.12(ii). We may assume that each prime ` ∈ Λ is greater than c1.

Take any n ≥ 1. After base extending everything to Fqn , we find that the setup and assumptions
of §1.3 and §1.5 still hold. Moreover, we may take the same sets Σ and Λ, and the integers g, b
and N do not change. So to prove Theorem 1.6, we may assume without loss of generality that
n = 1. We may further assume that U (Fq) is non-empty.
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For each subset D of Λ, define the representation

ρD =
∏
`∈D

ρ` : π1(U)→
∏
`∈D

O(V`);

note that the set D may be infinite now. Define the group GD := ρD(π1(U)) ⊆
∏
`∈D O(V`) and

its normal subgroup GgD := ρD(π1(UFq
)). We have GgD ⊇

∏
`∈DΩ(V`); this follows for finite D by

Proposition 3.1 and hence infinite D since the groups involved are profinite.
Denote the index of

∏
`∈ΛΩ(V`) in GgΛ by m.

Lemma 7.1. The value m is finite and satisfies m ≤ 22g+b−1. We have [GΛ : GgΛ] ≤ 2.

Proof. Since the groups
∏
`∈ΛΩ(V`) and GgΛ are profinite, to bound m it suffices to prove that

[GgD :
∏

`∈D
Ω(V`)] ≤ 22g+b−1

for any fixed finiteD ⊆ Λ. DefineH = GgD/
∏
`∈D Ω(V`); it is a subgroup of (

∏
`∈D O(V`))/(

∏
`∈D Ω(V`)) ∼=

(Z/2Z)2|D|. Therefore, H is isomorphic to (Z/2Z)r for some integer r. Let G be a finite group
with cardinality relatively prime to q that is a quotient of π1(UFq

). The group G can be generated
by a set of cardinality at most 2g + b− 1 by [SGA1, XIII Corollaire 2.12 ] . Since q is odd, we
deduce that the group H is generated by 2g+ b− 1 elements. Therefore, r ≤ 2g+ b− 1 and hence
|H| ≤ 22g+b−1.

The group GΛ/GgΛ is pro-cyclic since it is a quotient of the absolute Galois group of Fq. However,
every element in GΛ/GgΛ has order 1 or 2 since it is a quotient of

GΛ/(
∏
`∈Λ

Ω(V`)) ⊆ (
∏
`∈Λ

O(V`))/(
∏
`∈Λ

Ω(V`)) ∼=
∏
`∈Λ

(Z/2Z)2.

Therefore, GΛ/GgΛ is cyclic of order 1 or 2. �

Let hGgΛ be the coset of GgΛ in GΛ which contains ρΛ(Frobu) for all u ∈ U(Fq). Fix one of the
m cosets κ of

∏
`∈Λ Ω(V`) in GΛ that is also a subset of hGgΛ. We have κ =

∏
`∈Λ κ` for unique

cosets κ` of Ω(V`) in O(V`). We also fix an integer 1 ≤ i ≤ 6.

With κ and i fixed, let A be the set of u ∈ U(Fq) that satisfy ρΛ(Frobu) ⊆ κ. Let {Ci(V`)}`∈Λ
be the sets from Proposition 1.12. For a prime ` ∈ Λ, let A` be the set of u ∈ A for which
ρ`(Frobu) ⊆ Ci(V`) and define ω` := |Ci(V`) ∩ κ`|/|κ`|. For a subset D ⊆ Λ, define AD = ∩`∈DA`;
it is the set of u ∈ A satisfying ρ`(Frobu) ⊆ Ci(V`) for all ` ∈ D.

Lemma 7.2. For every finite subset D ⊆ Λ, we have

|AD| =
|U(Fq)|
m

·
∏
`∈D

ω` + rD,

where |rD| ≤ (
∏
`∈D `)

N(N−1)/4(2g+ b)q1/2.

Proof. Take any finite subset D ⊆ Λ. Since m is finite by Lemma 7.1, there is a non-empty finite
set D ⊆ E ⊆ Λ such that the projection map

GΛ/
∏

`∈Λ
Ω(V`)→ GE/

∏
`∈E

Ω(V`)

is an isomorphism. In particular, for u ∈ U(Fq), we have ρΛ(Frobu) ⊆ κ if and only if ρE(Frobu) ⊆∏
`∈E κ`.
Define

B :=
∏
`∈D

(Ci(V`) ∩ κ`)×
∏

`∈E−D
κ`;
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it is a subset of GE that is stable under conjugation. Observe that
AD = {u ∈ U(Fq) : ρE(Frobu) ⊆ B}.

Define the subgroup H :=
∏
`∈D{I}×

∏
`∈E−D Ω(V`) of GgE ; it is a normal subgroup of GE and

satisfies B ·H ⊆ B. The representation ρE is tamely ramified since the representations {ρ`}`∈Λ are
tamely ramified by assumption. By Theorem B.1(ii) in Appendix B, we have

|AD| =
|B|
|GgE |

· |U(Fq)|+ rD,

where rD satisfies |rD| ≤ |B|1/2/|H|1/2 · (2g + b)q1/2. By our choice of E, the index [GgE :∏
`∈EΩ(V`)] equals m. Therefore,

|B|
|GgE |

=
1
m

∏
`∈D

|Ci(V`) ∩ κ`|
|Ω(V`)|

=
1
m

∏
`∈D

ω`

and it thus remains to prove the correct bound for |rD|. We have |B|/|H| ≤ (
∏
`∈E |Ω(V`)|)/|H| =∏

`∈D |Ω(V`)| and hence |rD| ≤
∏
`∈D |Ω(V`)|1/2 · (2g + b)q1/2. It thus remains to prove that

|Ω(V`)| ≤ `N(N−1)/2 for all ` ∈ D.
Take any ` ∈ D. The possible cardinality for |O(V`)| is given in [Wil09, §3.7.2]. If N = 2n+ 1

is odd, we find that |O(V`)| ≤ 2`m2+2+4+···+2m = 2`N(N−1)/2. If N = 2n is even, we find that
|O(V`)| ≤ 2`m(m−1)+(2+4+···+2(m−1))+m = 2`N(N−1)/2. Therefore, |Ω(V`)| ≤ `N(N−1)/2/2. �

We will now use Selberg’s sieve, as described in Appendix A, to bound the cardinality of the set
Sκ,i := {u ∈ A : ρ`(Frobu) 6⊆ Ci(V`) for all ` ∈ Λ}.

Lemma 7.3. We have

|Sκ,i| �
(
m−1|U(Fq)| log q+ (2g+ b)q

)
q−1/(N2−N+6),

where the implicit constant depends only on Λ.

Proof. For each Q ≥ 1, let Λ(Q) be the set of primes ` ∈ Λ with ` ≤ Q. Since Λ has positive
natural density, there is a constant c3 ≥ 1 such that

|Λ(Q)| � Q/ logQ
for all Q ≥ c3, where c3 and the implicit constant depend only on Λ.

Set X := |U (Fq)|/m. For each finite D ⊆ Λ, we have |AD| = (
∏
`∈D ω`)X + rD, where rD

satisfies the inequality from Lemma 7.2. We may assume that ω` < 1 for all ` ∈ Λ since otherwise
Sκ,i = ∅ and the desired upper bound is trivial. We have ` ≥ c1, and hence ω` ≥ c2/N2, for all
` ∈ Λ. In particular, ω` > 0 for all ` ∈ Λ.

Fix a number Q ≥ c3. Observe that Sκ,i is a subset of A− (∪`∈Λ(Q)A`). Let Z (Q) be the
set of finite subsets D of Λ, equivalently of Λ(Q), such that

∏
`∈D` ≤ Q. We have |Z (Q)| ≤ Q.

Therefore,∑
D,D′∈Z (Q)

|rD∪D′ | ≤ |Z (Q)|2 · (Q2)N(N−1)/4(2g+ b)q1/2 ≤ QN(N−1)/2+2(2g+ b)q1/2.

By the Selberg sieve (Theorem A.1), we obtain the bound

|Sκ,i| ≤ X/H(Q) +QN(N−1)/2+2(2g+ b)q1/2,
where H(Q) :=

∑
D∈Z (Q)

∏
`∈D ω`/(1− ω`). Since Q ≥ c3, we have

H(Q) ≥
∑

`∈Λ(Q)

ω` ≥
c2
N2 · |Λ(Q)| � 1

N2Q/ logQ,
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where we have used Proposition 1.12(ii). Therefore,

|Sκ,i| � m−1|U(Fq)| ·N2 log(Q)/Q+QN(N−1)/2+2(2g+ b)q1/2.

Set Q := q1/(N2−N+6). If Q ≥ c3, then

|Sκ,i| �
(
m−1|U(Fq)| log q+ (2g+ b)q

)
q−1/(N2−N+6).(7.1)

If Q < c3, then the bound (7.1) is immediate since

(2g+ b)q · q−1/(N2−N+6) � (2g+ b)q � q+ 2g√q+ 1 ≥ |U(Fq)| ≥ |Sκ,i|. �

Since hGgΛ is the union of m cosets κ1, . . . ,κm of
∏
`∈Λ Ω(V`), we have

|{u ∈ U(Fq) : ρ`(Frobu) 6⊆ Ci(V`) for all ` ∈ Λ}|

≤
m∑
j=1
|Sκj ,i| �

(
|U(Fq)| log q+m(2g+ b)q

)
q−1/(N2−N+6),

where the last inquality uses Lemma 7.3. By Proposition 1.12(iii) and Lemma 7.1, we deduce that

1− δ(Fq) =
|{u ∈ U(Fq) : Pu(T ) does not satisfies (1.4)}|

|U(Fq)|

�
(

log q+ 22g+b(2g+ b)q/|U(Fq)|
)
q−1/(N2−N+6).

If g ≤ √q/4 and b ≤ q/4, then |U(Fq)| ≥ q+ 1− 2g√q− b ≥ q/4 and hence

1− δ(Fq)�
(

log q+ 22g+b(2g+ b)
)
q−1/(N2−N+6) � 22g+b(2g+ b) q−1/(N2−N+6) log q.

Finally suppose that g ≥ √q/4 or b ≥ q/4. Using N ≥ 3, we find that

22g+b(2g+ b)q−1/(N2−N+6) log q ≥ 22g+bq−1/12 ≥ 2
√
q/4q−1/12 � 1 ≥ 1− δ(Fq).

8. Proof of Theorem 1.1

Let P be the projective space over Z consisting of non-zero homogenous polynomials of degree d
in variables x0, . . . ,xn+1 up to scalars. By ordering the monomials in x0, . . . ,xn+1 of degree d, we
obtain an isomorphism P ∼= Pm

Z where m = (n+1+d
d )− 1. Let U ⊆ P be the open subscheme corre-

sponding to homogeneous polynomials that define a smooth hypersurface. From [KS99, §11.4.7], we
know that U is smooth, connected, and that U(k) is nonempty for all fields k. Let H ⊆ U ×Pn+1

be the subscheme defined by pairs consisting of a homogeneous polynomial and a point on the
corresponding hypersurface. The projection

π : H → U

gives the universal family of degree d hypersurfaces in Pn+1. For each point f ∈ U(k), with k a
field, we denote by Hf the fiber of π over f . Note that Hf is the hypersurface of Pn+1

k correspond-
ing to f and agrees with the notation introduced in §1.2.

We now show that the setup of §1.3 applies with R = Z. The following simply summarizes
material presented by Katz in [Kat12, §8] with X = Pn+1

Z . Take a prime ` ≥ 5. We have a lisse
Z`-sheaf Rnπ∗Z`(n) on UZ[1/`]. The cup product

Rnπ∗Z`(n)×Rnπ∗Z`(n)→ R2nπ∗Z`(2n) ∼= Z`

is an orthogonal autoduality modulo torsion (that the pairing is symmetric uses that n is even). On
Spec Z[1/`] we have the lisse Z`-sheaf Rnγ∗Z`(n), where γ : Pn+1

Z[1/`] → Spec Z[1/`] is the structure
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morphism. The sheaf Rnγ∗Z`(n) pulls back to a sheaf F` on UZ[1/`]. We can view F` as a subsheaf
of Rnπ∗Z`(n), and we define EvZ` to be the orthogonal to F` under the cup product pairing.

For ` sufficiently large, the lisse sheaf EvZ` is torsion free and the cup product makes EvZ` self
dual over Z`. With such `, let M` be the fiber of EvZ` at a geometric fiber of U ; it gives rise to a
representation

ρ` : π1(UZ[1/`])→ O(M`)

These representations ρ` are compatible and the corresponding polynomials Pf (T ) are those de-
scribed in §1.2. Note that the description of the zeta function of Hf from §1.2 is given in the second
half of [Kat12, §8]. The zeta functions are also described in [KS99, §11.4 ] where it is observed that
their common degree is N := (d− 1)((d− 1)n+1 + 1)/d. So the M` have common rank N over Z`

and N > 2.
In [Kat12, §8], Katz observes that the representations ρ` satisfy condition (a) in §1.3.3. More-

over, he notes that the Zariski closure in condition (a) is always the full group OV` ; using this and
equidistribution, one can prove Remark 1.3. For this big monodromy result, we need our assump-
tions d ≥ 3 and (n, d) 6= (2, 3).

Using N = (d− 1)((d− 1)n+1 + 1)/d and n even, we find that N is even if and only if d is odd.
The following, which we will prove in §8.1, describes the field K from §1.3.4 when N is even.

Lemma 8.1. Suppose that N is even (equivalently, d is odd). Then K = Q(
√
(−1)(d−1)/2d).

Moreover, K = Q if and only if d is a square.

We have verified the axiomatic setup of §1.3. Lemma 8.1 describes the field K when N is even
and in particular describes when K = Q. Theorem 1.1 now follows from Theorem 1.4.

8.1. Proof of Lemma 8.1. Let X be a smooth hypersurface of degree d in Pn+1
C and define the

complex manifold X := X (C). Let h in Hn(X, Z) be the class of a linear section of codimension
n/2; we have h2 = d. Let L := Hn(X, Z)◦ be the primitive cohomology lattice, i.e., the orthogonal
complement in Hn(X, Z) of the class h with respect to the usual intersection pairing. Note that L
is a lattice, i.e., an orthogonal space over Z, and so the discriminant of L is a well-defined integer.
Beauville [Bea09, Theorem 4] describes the structure of L from which it is clear that disc(L) = ±d.

We can take M` to be the fiber of the sheaf EvZ` above the complex point corresponding to X .
For ` sufficiently large, the orthogonal space M` will be isomorphic to L⊗Z Z`. So for ` sufficiently
large, the orthogonal space V` :=M`/`M` over F` will have discriminant disc(L) · (F×` )2.

From the description of K in §1.3.4, a sufficiently large prime ` splits in K if and only if
(−1)N/2 disc(L) is a square modulo `. Therefore, K = Q(

√
(−1)N/2 disc(L)). Using that N =

(d− 1)((d− 1)n+1 + 1)/d and d is odd, we find that N ≡ (d− 1)/d ≡ d− 1 (mod 4). Therefore,
K = Q(

√
(−1)(d−1)/2 disc(L)).

We will show that disc(L) = d and hence K = Q(
√
(−1)(d−1)/2d). For K to be Q, we certainly

need d to be a square. If d is a square, then d ≡ 1 (mod 4) since it is odd and thus K = Q.

It remains to prove that disc(L) = d. Since disc(L) = ±d, we need only show that disc(L) is
positive.

We now consider the cohomology group Hn(X, R). The cup product gives a non-degenerate
symmetric pairing Hn(X, R)×Hn(X, R) → R. So Hn(X, R) is an orthogonal space over R and
we will now compute its discriminant; there are two possibilities (R×)2 and −1 · (R×)2. We claim
that disc(Hn(X, R)) = (R×)2. Since Hn(X, R) = L⊗Z R⊕Rh and h2 = d > 0, this claim will
prove that disc(L) is positive. There is an orthogonal basis v1, . . . , vm over R of Hn(X, R). By
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scaling the vectors, we may assume that 〈vi, vi〉 = ±1. Let b+ and b− be the number of vi for which
〈vi, vi〉 is 1 and −1, respectively. The discriminant of Hn(X, R) is thus equal to (−1)b−(R×)2; so
to complete the proof of Lemma 8.1, it suffices to show that b− is even.

Lemma 8.2. We have b+ − b− ≡ d (mod 4).

Proof. The Hodge index theorem [Voi02, Theorem 6.33] shows that

b+ − b− =
∑
p,q

(−1)php,q(X),

where hp,q(X) is the (p, q)-Hodge number of X. For 0 ≤ i ≤ 2n with i 6= n, dimR H
i(X, R) is

0 if i is odd and 1 if i is even, cf. [KS99, §11.4.2]. So when p+ q 6= n, we have hp,q(X) = 1 if
0 ≤ p = q ≤ n and hp,q(X) = 0 otherwise. Therefore,

b+ − b− =
∑

p+q=n

(−1)php,q(X) +
∑

0≤i≤n, i 6=n/2
(−1)i =

∑
p+q=n

(−1)php,q(X) + 1− (−1)n/2.

By Hirzebruch’s formula for Hodge numbers, cf. [SGA7 II, Exposé XI Théorème 2.3], we have
the following equality∑

p≥0,q≥0
hp,q
◦ ypzq =

1
(1 + y)(1 + z)

(
(1 + y)d − (1 + z)d

−(1 + y)dz + (1 + z)dy
− 1

)

in Z[[y, z]], where hp,q
◦ := hp,q − δp,q and hp,q is the (p, q)-Hodge number of any smooth hypersurface

of degree d in P
2(p+q)+1
C . Setting y = −x and z = x, we have

∑
m≥0

( ∑
p+q=m

(−1)php,q
0

)
xm =

1
(1− x)(1 + x)

(
(1− x)d − (1 + x)d

−(1− x)dx− (1 + x)dx
− 1

)
=

1
1− x2 (α/β − 1),

where α := −
(
(1− x)d − (1 + x)d

)
/(2x) and β := ((1− x)d + (1 + x)d)/2. Expanding out α and

β, we find that

α =− 1
2
∑

i≥0
(di)((−1)i − 1)xi−1 =

∑
k≥0

( d
2k+1)x

2k and

β = 1
2
∑

i≥0
(di)((−1)i + 1)xi =

∑
k≥0

( d2k)x
2k.

In particular, we have α,β ∈ Z[[x]]. For each k ≥ 0, we have(
d

2k+ 1

)
− d

(
d

2k

)
=

(
d

2k

)(
d− 2k
2k+ 1 − d

)
=

(
d

2k

)
· −2k(d+ 1)

2k+ 1 ≡ 0 (mod 4),

where the congruence uses that d is odd. Therefore, α ≡ dβ (mod 4). The constant term of β is
1, so β−1 ∈ Z[[x]] and hence α/β ≡ d (mod 4). So∑

m≥0

( ∑
p+q=m

(−1)php,q
0

)
xm ≡ 1

1− x2 (d− 1) = (d− 1)(1 + x2 + x4 + x6 + · · · ) (mod 4)

and hence ∑
p+q=n

(−1)php,q =
∑

p+q=n

(−1)php,q
◦ + (−1)n/2 ≡ d− 1 + (−1)n/2 (mod 4).

Therefore, b+ − b− ≡ (d− 1 + (−1)n/2) + 1− (−1)n/2 ≡ d (mod 4). �
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We have b+ + b− = N + 1 = (d− 1)((d− 1)n+1 + 1)/d+ 1. Using that d is odd and n+ 1 ≥ 2,
we find that b+ + b− ≡ (d− 1)/d+ 1 ≡ d (mod 4). By Lemma 8.2. we deduce that

2b− = (b+ + b−)− (b+ − b−) ≡ d− d = 0 (mod 4).
This implies that b− is even as desired.

9. Proof of Theorems 1.7 and 1.10

We first check the axiomatic setup of §1.3 with R = Fq and U = Ud. Let Σ be the set of primes
` ≥ 5 that do not divide q.

Take any ` ∈ Σ. Following Katz, Hall constructs in [Hal08, §6.2] a representation
ρ` : π1(Ud)→ O(V`),

with V` an orthogonal space over F`, satisfying
Pu(T ) ≡ det(I − ρ`(Frobu)T ) (mod `)

for all n ≥ 1 and u ∈ Ud(Fqn). One can easily see that ρ` arises from a representation ρ` : π1(Ud)→
O(M`), with M` an orthogonal space over Z` and V` ∼=M`/`M`, satisfying

Pu(T ) = det(I − ρ`(Frobu)T )(9.1)

for all n ≥ 1 and u ∈ Ud(Fqn) (in Hall’s construction, simply replace Td,` with the Z`-sheaf
Td,`∞ described in [Hal08, §6.6]). The common dimension of the V` is our integer Nd by [Hal08,
Lemma 6.2]. We have Nd ≥ 3 by assumption.

It remains to verify that condition (b) in §1.3.3 holds. To do this, we will restrict to a subvariety
of Ud; after possibly replacing Fq by a finite extension, one can further assume that Ud−1(Fq) is
non-empty.

Now fix a polynomial g ∈ Ud−1(Fq). We let U be the subvariety of A1
Fq

consisting of c for
which (t− c)g(t) is separable and relatively prime to m(t). We can identify U with a closed sub-
variety of Ud via the map c 7→ (t− c)g(t). Restricting ρ` and ρ` to π1(U) gives representations
%` : π1(U ) → O(M`) and %` : π1(U) → O(V`). These representations satisfy the axiomatic setup
of §1.3.1 and §1.3.2 with R = Fq and the same set Σ from the above discussion. Moreover, each
representation %` is tamely ramified, cf. [Hal08, §6.3].

Let Λ be the set of ` ∈ Σ which do not divide max{1,− ordv(jE)} for any place v of Fq(t), where
jE ∈ Fq(t) is the j-invariant of E. We now show that condition (b) holds for the representations
{%`}`∈Λ.

Lemma 9.1. For each prime ` ∈ Λ, we have %`(π1(UFq
)) ⊇ Ω(V`) and %`(π1(UFq

)) is not a
subgroup of SO(V`).

Proof. After replacing E by its quadratic twist by g(t), we may assume without loss of generality
that d = 1. Note that performing this twist leaves the integer B unchanged. Using the assumptions
of the theorems, there will be a place v 6=∞ of Fq(t) for which E has Kodaira symbol I∗0. There is
also a place v 6=∞ for which E has multiplicative reduction, i.e., E has Kodaira symbol In at v for
some n ≥ 1. The lemma is now a direct consequence of [Zyw14, Theorem 3.4] which is an explicit
version of [Hal08, Theorem 6.4]. �

An immediate consequence of Lemma 9.1 is that ρ`(π1(Ud,Fq )) ⊇ Ω(V`) for all ` ∈ Λ and
ρ`(π1(Ud,Fq )) is not a subgroup of SO(V`).
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Remark 9.2. Using that ρ`(π1(Ud,Fq )) is not a subgroup of SO(V`) and equidistribution, one can
prove Remark 1.8(v) which says that |{u ∈ Ud(Fqn) : εu = ε}|/|U (Fqn)| → 1/2 as n→∞ for each
ε ∈ {±1}

We have now verified enough to apply Theorems 1.4 and 1.6 to the representations {ρ`}`∈Λ.
Note that U is open in A1

Fq
⊆ P1

Fq
and |(P1 −U )(Fq)| = d+ degm.

Theorems 1.7 and 1.10 are now immediate if we can prove that K = Q(
√
(−1)Nd/2Dd) if Nd is

even.
Now suppose that Nd is even. It remains to compute the field K from §1.3.4 and determine

when K = Q. The following lemma depends on a result from [Zyw14] which uses known cases of
the Birch and Swinnerton-Dyer conjecture for elliptic curves over global function fields.

Lemma 9.3. For ` ∈ Λ, we have disc(V`) = Dd · (F×` )2.

Proof. Take any ` ∈ Λ. By Lemma 9.1, there is an element g ∈ %`(π1(U )) such that det(I ± g) 6= 0.
By equidistribution, there is some c ∈ U(Fqn) such that %`(Frobc) is conjugate to g in O(V`). By
[Zyw14, Proposition 3.2(e)], we have disc(V`) = D · (F×` )2, where D :=

∏
v γv(Et−c)

deg v and the
product is over places v of Fqn(t). We have D = γ∞(Etd)

∏
v 6=∞ γv(Et−c)

deg v, where the product
is over places v of Fqn(t). We have D = Dd by noting that the integer γ∞(Etd)

∏
v 6=∞ γv(Et−c)

deg v

does not change if we consider v running over places of Fq(t) instead of Fqn(t). �

By Lemma 9.3, we have K = Q(
√
(−1)Nd/2Dd). In particular, K = Q if and only if (−1)Nd/2Dd

is a square.

Appendix A. The Selberg sieve

In this appendix, we give a version of Selberg’s sieve. This elegant and useful method was
introduced by Selberg in [Sel47] to sieve integers by congruences modulo primes. For background,
see [IK04, §6.5] or [CM06, §7.2]. For future reference, we give a version that is more general than
what is required for our application.

Theorem A.1. Let A be a measure space with a bounded measure µ. Let Λ be a finite set, and for
each λ ∈ Λ fix a measurable subset Aλ of A. Define the set

S := A−
(
∪λ∈Λ Aλ

)
.

Fix real numbers {ωλ}λ∈Λ with 0 < ωλ < 1 and X ≥ 0. Define AD := ∩λ∈DAλ for each non-empty
D ⊆ Λ and set A∅ := A. Let rD be the real number satisfying

(A.1) µ(AD) =

( ∏
λ∈D

ωλ

)
·X + rD.

Let Z be a set of subsets of Λ such that if D ∈ Z and E ⊆ D, then E ∈ Z . Then

(A.2) µ(S) ≤ X

H
+

∑
D,D′∈Z

|rD∪D′ |

where H :=
∑
D∈Z

∏
λ∈D

ωλ
1− ωλ

. (When H = 0, we interpret this as giving the trivial bound µ(S) ≤

+∞.)

Before proceeding, let us first give some context. After normalizing the measure, we may assume
that (A,µ) is a probability space and hence use the language of probability. For each λ ∈ Λ, we
have fixed an event Aλ. So S is the set of outcomes that do not belong to any of the elements Aλ.
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Consider the special case where the events {Aλ}λ∈Λ are independent. We have µ(S) =
∏
λ∈Λ(1−

ωλ). Set ωλ = µ(Aλ) and X = 1. In (A.1), we take rD = 0 for D ⊆ Λ. With Z the power set of
Λ, we have H =

∏
λ∈Λ(1+ ωλ/(1−ωλ)) =

∏
λ∈Λ(1−ωλ)−1 and hence our sieve gives the optimal

bound µ(S) ≤
∏
λ∈Λ(1− ωλ).

In the general setting, we think of the sets Aλ as being “almost independent” and hence the
number rD should be relatively small (at least for some D of small cardinality). Inclusion-exclusion
gives

µ(S) =
∑
D⊆Λ

(−1)|D|µ(AD) =
∑
D⊆Λ

(−1)|D|
( ∏
λ∈D

ωλ

)
X +R =

∏
λ∈Λ

(1− ωλ) ·X +R

with R :=
∑
D⊆Λ(−1)|D|rD. In practice, the “error term” R can be difficult to control and may in

fact exceed the “main term”. To find upper bounds for µ(S) using our sieve, one need to prudently
select the sieve support Z so that “error term” in (A.2) is not too large.

A.1. Proof of Theorem A.1. For D ⊆ Λ, define ωD =
∏
λ∈D ωλ. For each non-empty D ∈ Z ,

we fix a real number λD that will be chosen later. Set λ∅ = 1. For any U ⊆ A, let χU : A→ {0, 1}
be the characteristic function of U , i.e., χU (a) = 1 if and only if a ∈ U . The set U is measurable
if and only if χU : A→ {0, 1} is measurable. For each a ∈ A, we claim that

χS(a) ≤
( ∑
D∈Z

χAD (a)λD

)2
.

If a /∈ S, then χS(a) = 0 and the above inequality is immediate since the square of a real number
is non-negative. If a ∈ S, then

∑
D∈Z χAD(a)λD = λ∅ = 1. Therefore,

µ(S) =
∫
A
χS(a)dµ(a) ≤

∫
A

( ∑
D∈Z

χAD (a)λD

)2
dµ(a) =

∑
D,D′∈Z

(∫
A
χAD (a)χAD′ (a)dµ(a)

)
λDλD′

and thus µ(S) ≤
∑
D,D′∈Z µ(AD∪D′)λDλD′ . Using (A.1), this inequality becomes

µ(S) ≤ ∆ ·X +R

where
∆ =

∑
D,D′∈Z

ωD∪D′λDλD′ and R =
∑

D,D′∈Z

rD∪D′λDλD′ .

We first study ∆. By the multiplicative definition of ωD, we have

∆ =
∑

D,D′∈Z

ωDωD′

ωD∩D′
λDλD′ .

For D,D′ ∈ Z , we have
1

ωD∩D′
=

∏
λ∈D∩D′

(
1 + 1− ωλ

ωλ

)
=

∑
E⊆D∩D′

∏
λ∈E

1− ωλ
ωλ

and thus

∆ =
∑

D,D′∈Z

ωDωD′

( ∑
E⊆D∩D′

∏
λ∈E

1− ωλ
ωλ

)
λDλD′ =

∑
E∈Z

(∏
λ∈E

1− ωλ
ωλ

) ∑
D,D′∈Z

E⊆D,E⊆D′

ωDωD′λDλD′ .

So

(A.3) ∆ =
∑
E∈Z

(∏
λ∈E

1− ωλ
ωλ

)
ξ2
E
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where ξE := (−1)|E|
∑

E⊆D∈Z

ωDλD for E ∈ Z . By Möbius inversion, for D ∈ Z we have

(A.4) ωDλD =
∑

D⊆E∈Z

(−1)|E|−|D| · (−1)|E|ξE = (−1)|D|
∑

D⊆E∈Z

ξE

and in particular,
∑
E∈Z ξE = λ∅ = 1.

Since ∆ shows up in our upper bound for µ(S), we now minimize its value. With (A.3) we view
∆ as a quadratic form in the variables (ξE)E∈Z subject to the constraint

∑
E∈Z ξE = 1; it is not

hard to show that ∆ obtains its minimum value of H−1 =
(∑

D∈Z

∏
λ∈D

ωλ
1−ωλ

)−1
when

ξE =
1
H

∏
λ∈E

ωλ
1− ωλ

for E ∈ Z . With these optimized values of ξE and (A.4), we now define

(A.5) λD :=
1
H

(−1)|D|

ωD

∑
D⊆E∈Z

∏
λ∈E

ωλ
1− ωλ

for each D ∈ Z . By our choice, we have ∆ = H−1 and hence µ(S) ≤ X/H +R. It remains to
bound R. For each D ∈ Z ,

0 ≤ (−1)|D|λD =
1
H

∏
λ∈D

(
1 + ωλ

1− ωλ

) ∑
D⊆E∈Z

∏
λ∈E−D

ωλ
1− ωλ

≤ 1
H

∑
E∈Z

∏
λ∈E

ωλ
1− ωλ

= 1.

Therefore,
R ≤

∑
D,D′∈Z

|rD∪D′ ||λD||λD′ | ≤
∑

D,D′∈Z

|rD∪D′ |.

Appendix B. Equidistribution

Let U be an affine variety of dimension d ≥ 1 over a finite field Fq that is geometrically smooth
and irreducible. Let ρ : π1(U)→ G be a surjective and continuous homomorphism, where π1(U) is
the étale fundamental group and G is a finite group. Let Gg be the image of π1(UFq

) under ρ and
define m = [G : Gg]. We have an exact sequence of groups

1→ Gg ↪→ G
ϕ−→ Z/mZ→ 1

such that ϕ(Frobu) ≡ n (mod m) for all u ∈ U(Fqn).

Theorem B.1. Fix an integer n ≥ 1. Let C be a subset of G that is stable under conjugation and
satisfies ϕ(C) = {n mod m}.

(i) Then
|{u ∈ U(Fqn) : ρ(Frobu) ⊆ C}|

|U(Fqn)|
=
|C|
|Gg|

+O(q−n/2),

where the implicit constant does not depend on n.
(ii) Assume further that U is of dimension 1 and ρ is tamely ramified. Let X/Fq be the smooth

projective curve obtained by completing U . Let g be the genus of X and define b = |X(Fq)−
U(Fq)|. Suppose that H ⊆ Gg is a normal subgroup of G that satisfies C ·H ⊆ C. Then∣∣∣∣|{u ∈ U(Fq) : ρ(Frobu) ⊆ C}| −

|C|
|Gg|
|U(Fq)|

∣∣∣∣ ≤ |C|1/2

|H|1/2 (1− |H|/|G
g|)1/2(2g− 2 + b)q1/2.
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Proof. Both parts are applications of the machinery of Grothendieck and Deligne used to prove the
Weil conjectures. Part (i) is well known; a proof can be found in [Cha97, §4]. For (ii), one can
replace ρ with the representation π1(U , η) ρ−→ G→ G/H and reduce to the case where H = 1. This
case has already been dealt with by the author, cf. [Zyw10b, Proposition 5.1]. �

References
[ATLAS] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford

University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With
computational assistance from J. G. Thackray. ↑2.2, 3.1

[AV08] Omran Ahmadi and Gerardo Vega, On the parity of the number of irreducible factors of self-reciprocal
polynomials over finite fields, Finite Fields Appl. 14 (2008), no. 1, 124–131. ↑2.3, 2.3

[Bea09] Arnaud Beauville, The primitive cohomology lattice of a complete intersection, C. R. Math. Acad. Sci.
Paris 347 (2009), no. 23-24, 1399–1402 (English, with English and French summaries). ↑8.1

[Cha97] Nick Chavdarov, The generic irreducibility of the numerator of the zeta function in a family of curves with
large monodromy, Duke Math. J. 87 (1997), no. 1, 151–180. ↑1.7, B

[CM06] Alina Carmen Cojocaru and M. Ram Murty, An introduction to sieve methods and their applications,
London Mathematical Society Student Texts, vol. 66, Cambridge University Press, Cambridge, 2006. ↑A

[CCH05] B. Conrad, K. Conrad, and H. Helfgott, Root numbers and ranks in positive characteristic, Adv. Math.
198 (2005), no. 2, 684–731. ↑1.9

[Gal73] P. X. Gallagher, The large sieve and probabilistic Galois theory, Analytic number theory (Proc. Sympos.
Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), 1973, pp. 91–101. ↑5.1

[GM02] Benedict H. Gross and Curtis T. McMullen, Automorphisms of even unimodular lattices and unramified
Salem numbers, J. Algebra 257 (2002), no. 2, 265–290. ↑2.4

[Hal08] Chris Hall, Big symplectic or orthogonal monodromy modulo `, Duke Math. J. 141 (2008), no. 1, 179–203.
↑9, 9, 9

[IK04] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Collo-
quium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. ↑A

[Jou09] Florent Jouve, Maximal Galois group of L-functions of elliptic curves, Int. Math. Res. Not. IMRN 19
(2009), 3557–3594. ↑1.11, 5.2

[Kat90] Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124,
Princeton University Press, Princeton, NJ, 1990. ↑3.1

[Kat12] Nicholas M. Katz, Report on the irreducibility of L-functions, Number theory, analysis and geometry, 2012,
pp. 321–353. ↑i, 1.7, 8

[KS99] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American
Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI,
1999. ↑6, 8, 8.1

[Lar95] M. Larsen, Maximality of Galois actions for compatible systems, Duke Math. J. 80 (1995), no. 3, 601–630.
↑3.1

[Sel47] Atle Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh., Trondhjem 19
(1947), no. 18, 64–67. ↑A

[SGA1] Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical
Documents (Paris)], 3, Société Mathématique de France, Paris, 2003. Séminaire de géométrie algébrique
du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck,
With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in
Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. ↑3.1, 7

[SGA7 II] Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-
Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969
(SGA 7 II); Dirigé par P. Deligne et N. Katz. ↑8.1

[Voi02] Claire Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathemat-
ics, vol. 76, Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila
Schneps. ↑8.1

[Wil09] Robert A. Wilson, The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag
London Ltd., London, 2009. ↑2.2, 7

[Zas62] Hans Zassenhaus, On the spinor norm, Arch. Math. 13 (1962), 434–451. ↑2.2
[Zyw10a] David Zywina, Elliptic curves with maximal Galois action on their torsion points, Bull. London Math.

Soc. 42 (2010), no. 5, 811–826. ↑3.1
34



[Zyw10b] , Hilbert’s irreducibility theorem and the larger sieve (2010), available at https://arxiv.org/abs/
1011.6465. arXiv:1011.6465. ↑B

[Zyw14] , The inverse Galois problem for orthogonal groups (2014), available at https://arxiv.org/abs/
1409.1151. arXiv:1409.1151. ↑iii, 9, 9, 9

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
Email address: zywina@math.cornell.edu

35

https://arxiv.org/abs/1011.6465
https://arxiv.org/abs/1011.6465
https://arxiv.org/abs/1409.1151
https://arxiv.org/abs/1409.1151

	1. Introduction
	1.1. Constraint on the Galois group of reciprocal polynomials
	1.2. Example: smooth hypersurfaces over finite fields
	1.3. General setup
	1.4. Main result
	1.5. An effective version
	1.6. Example: L-functions of twists of an elliptic curve
	1.7. Some related results
	1.8. Overview
	Acknowledgements

	2. Orthogonal groups and characteristic polynomials
	2.1. Orthogonal spaces
	2.2. Finite fields
	2.3. Reciprocal polynomials
	2.4. Counting elements with a given separable characteristic polynomial

	3. Big monodromy
	3.1. Proof of Propositions 3.1 and 3.2

	4. The field K
	5. Proof of Proposition 1.12
	5.1. Big subgroups of W2n
	5.2. A criterion for a maximal Galois group
	5.3. Proof of Proposition 1.12

	6. Proof of Theorem 1.4
	7. Proof of Theorem 1.6
	8. Proof of Theorem 1.1
	8.1. Proof of Lemma 8.1

	9. Proof of Theorems 1.7 and 1.10 
	Appendix A. The Selberg sieve
	A.1. Proof of Theorem A.1

	Appendix B. Equidistribution
	References

